Synlett 2024; 35(14): 1621-1628
DOI: 10.1055/a-2192-9185
account

Lewis Base/3d Transition-Metal Cooperatively Catalyzed Asymmetric Reactions

Jin Song
a   Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. of China
,
Liu-Zhu Gong
b   Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. of China
› Author Affiliations
Support was provided by the National Natural Science Foundation of China (grant nos. 21831007 and 22071229).


Abstract

Lewis base/transition-metal cooperatively catalyzed asymmetric transformations have attracted extensive attention as they offer complementary catalytic systems within the realm of cooperative catalysis. Recently, the synergistic use of Lewis bases in combination with earth-abundant 3d metals has emerged as a fascinating prospect, presenting an opportunity to move away from the reliance on noble metals and to explore novel catalytic processes. In this Account, we highlight our recent achievements regarding the chemistry and synthetic utility of isothiourea (ITU) activated C1-ammonium enolates and N-heterocyclic carbene (NHC)-bound homoenolate equivalents in conjunction with 3d transition-metal activated electrophiles. The remarkable success in the stereoselective construction of carbon–carbon and carbon–heteroatom bonds has led to significant contributions to stereodivergent synthesis.

1 Introduction

2 ITU/Copper Cooperative Catalysis

3 NHC/Copper Cooperative Catalysis

4 NHC/Nickel Cooperative Catalysis

5 Conclusion



Publication History

Received: 08 September 2023

Accepted after revision: 16 October 2023

Accepted Manuscript online:
16 October 2023

Article published online:
01 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For early examples:
    • 1a Chen G.-S, Deng Y.-J, Gong L.-Z, Mi A.-Q, Cui X, Jiang Y.-Z, Choi MC. K, Chan AS. C. Tetrahedron: Asymmetry 2001; 12: 1567
    • 1b Nakoji M, Kanayama T, Okino T, Takemoto Y. Org. Lett. 2001; 3: 3329

    • For reviews and books:
    • 1c Han Z.-Y, Wang C, Gong L.-Z. Science of Synthesis: Asymmetric Organocatalysis, Vol. 2. Maruoka K. Georg Thieme Verlag; Stuttgart: 2012: 697
    • 1d Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 1e Du Z, Shao Z. Chem. Soc. Rev. 2013; 42: 1337
    • 1f Chen D.-F, Han Z.-Y, Zhou X.-L, Gong L.-Z. Acc. Chem. Res. 2014; 47: 2365
    • 1g Gong L.-Z. Asymmetric Organo-Metal Catalysis: Concepts, Principles, and Applications Wiley-VCH: Weinheim, 2022
    • 1h Chen D.-F, Gong L.-Z. J. Am. Chem. Soc. 2022; 144: 2415
    • 2a Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
    • 2b Lu H, Liu J.-Y, Li H.-Y, Xu P.-F. Acta Chim. Sin. 2018; 76: 831
    • 2c Nagao K, Ohmiya H. Top. Curr. Chem. 2019; 377: 35
    • 2d Knox GJ, Hutchings-Goetz LS, Pearson CM, Snaddon TN. Top. Curr. Chem. 2020; 378: 16
    • 3a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 3b Förster C, Heinze K. Chem. Soc. Rev. 2020; 49: 1057
    • 4a Merad J, Pons J.-M, Chuzel O, Bressy C. Eur. J. Org. Chem. 2016; 5589
    • 4b Birman VB. Aldrichimica Acta 2016; 49: 23
    • 5a Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 5b Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 5c Chen X, Wang H, Jin Z, Chi YR. Chin. J. Chem. 2020; 38: 1167
    • 5d Ohmiya H. ACS Catal. 2020; 10: 6862
  • 6 Díez-González S, Marion N, Nolan SP. Chem. Rev. 2009; 109: 3612
  • 9 Schwarz KJ, Amos JL, Klein JC, Do DT, Snaddon TN. J. Am. Chem. Soc. 2016; 138: 5214
  • 10 Song J, Zhang Z.-J, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 5212
    • 11a Wang Q, Li T.-R, Lu L.-Q, Li M.-M, Zhang K, Xiao W.-J. J. Am. Chem. Soc. 2016; 138: 8360
    • 11b Li T.-R, Cheng B.-Y, Wang Y.-N, Zhang M.-M, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2016; 55: 12422
    • 12a Lu X, Ge L, Cheng C, Chen J, Cao W, Wu X. Chem. Eur. J. 2017; 23: 7689
    • 12b Shen J.-H, Tian F, Yang W.-L, Deng W.-P. Chin. J. Chem. 2021; 39: 3292
  • 13 Zhao B, Du H, Shi Y. J. Am. Chem. Soc. 2008; 130: 7220
  • 14 Song J, Zhang Z.-J, Chen S.-S, Fan T, Gong L.-Z. J. Am. Chem. Soc. 2018; 140: 3177
    • 15a Birman VB, Li X, Han Z. Org. Lett. 2007; 9: 37
    • 15b Liu P, Yang X, Birman VB, Houk KN. Org. Lett. 2012; 14: 3288
    • 15c Robinson ER. T, Walden DM, Fallan C, Greenhalgh MD, Cheong PH.-Y, Smith AD. Chem. Sci. 2016; 7: 6919
    • 15d Greenhalgh MD, Smith SM, Walden DM, Taylor JE, Brice Z, Robinson ER. T, Fallan C, Cordes DB, Slawin AM. Z, Richardson HC, Grove MA, Cheong PH.-Y, Smith AD. Angew. Chem. Int. Ed. 2018; 57: 3200
    • 16a Bai Y, Xiang S, Leow ML, Liu X.-W. Chem. Commun. 2014; 50: 6168
    • 16b Liu K, Hovey MT, Scheidt KA. Chem. Sci. 2014; 5: 4026

      For selected examples, see:
    • 17a Guo C, Fleige M, Janssen-Müller D, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2016; 138: 7840
    • 17b Guo C, Janssen-Müller D, Fleige M, Lerchen A, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2017; 139: 4443
    • 17c Singha S, Patra T, Daniliuc CG, Glorius F. J. Am. Chem. Soc. 2018; 140: 3551
    • 17d Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
    • 17e Li Y.-Y, Li S, Fan T, Zhang Z.-J, Song J, Gong L.-Z. ACS Catal. 2021; 11: 14388
  • 18 Namitharan K, Zhu T, Cheng J, Zheng P, Li X, Yang S, Song B.-A, Chi YR. Nat. Commun. 2014; 5: 3982
  • 19 Zhang Z.-J, Zhang L, Geng R.-L, Song J, Chen X.-H, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 12190
  • 20 Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
  • 21 Zhang Z.-J, Wen Y.-H, Song J, Gong L.-Z. Angew. Chem. Int. Ed. 2021; 60: 3268
  • 22 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
  • 23 Wen Y.-H, Zhang Z.-J, Li S, Song J, Gong L.-Z. Nat. Commun. 2022; 13: 1344
    • 24a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 24b Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020
  • 25 Liu H, Han Y.-F, Gao Z.-H, Zhang C.-L, Wang C, Ye S. ACS Catal. 2022; 12: 1657
  • 26 Fan T, Song J, Gong L.-Z. Angew. Chem. Int. Ed. 2022; 61: e202201678