Horm Metab Res 2023; 55(12): 813-818
DOI: 10.1055/a-2190-3847
Review

Thyroid Diseases and Intestinal Microbiome

Ioannis Legakis
1   Endocrinology and Metabolism, European University Cyprus, Nicosia, Cyprus
,
George P. Chrousos
2   First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
,
Stylianos Chatzipanagiotou
3   Microbiology, National and Kapodistrian University of Athens, Athens, Greece
› Author Affiliations

Abstract

The human microbiome plays an integral role in health. In particular, it is important for the development, differentiation, and maturation of the immune system, 70% of which resides in the intestinal mucosa. Microbiome studies conducted to date have revealed an association between disturbances in the microbiota (dysbiosis) and various pathological disorders, including changes in host immune status. Autoimmune thyroid diseases are one of the most common organ-specific autoimmune disorders, with a worldwide prevalence higher than 5%. The predominant autoimmune thyroid diseases are Hashimoto’s thyroiditis and Grave’s disease. Several factors, such as genetic and environmental ones, have been studied. In accordance with recent studies, it is assumed that the gut microbiome might play a significant role in triggering autoimmune diseases of the thyroid gland. However, the exact etiology has not yet been elucidated. The present review aims to describe the work carried out so far regarding the role of gut microflora in the pathogenesis of autoimmune thyroid diseases and its involvement in the appearance of benign nodules and papillary thyroid cancer. It appears that future work is needed to elucidate more precisely the mechanism for gut microbiota involvement in the development of autoimmune thyroid diseases.



Publication History

Received: 13 July 2023

Accepted after revision: 11 October 2023

Accepted Manuscript online:
11 October 2023

Article published online:
01 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124: 837-848
  • 2 Legakis NI. Microbes and Man. Honorary volume of D. F. Kokkinos National and Kapodistrian University of Athens. 2012: 711-720 Medical Publications Yiannis V; Parisianou:
  • 3 Backehed F, Ley RE, Sonnenburg JL. et al. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920
  • 4 Cadwell K, Wang D. The virome in health and disease. Curr Opin Virol 2021; 49: 139-141
  • 5 Zhang F, Aschenbrenner D, Yoo YJ. et al. The gut mycobiome in health , diseases and clinical applications in association with the gut bacteriome assembly. Lancet Microbe 2022; 3: e969-e983
  • 6 Arumugam M, Raes J, Pelletier E. et al. Enterotypes of the human gut microbiome. Nature 2011; 473: 174-180
  • 7 Sekirov I, Russel SL, Antunes LC. et al. Gut microbiota in health and disease. Physiol Rev 2010; 90: 895-904
  • 8 Potgieter M, Bester J, Kell DB. et al. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39: 567-591
  • 9 Frank DN, Amand ALST, Feldman RA. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 2007; 104: 13780-13785
  • 10 Qin J, Li R, Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65
  • 11 Docimo G, Cangiano A, Romano RM. et al. The human microbiota in endocrinology: implications for pathophysiology, treatment and prognosis in thyroid diseases. Front Endocrinol 2020; 11: 1-7
  • 12 Roushan T, Ahmed D, Ali MR. Human genome project - a review. Med Today 2014; 26: 53-55
  • 13 Green ED, Watson JD, Collins FS. Human genome project. Nature 2015; 526: 29-31
  • 14 Suzuki TA, Ley RE. The role of the microbiota in human genetic adaptation. Science 2020; 370: eaag6827
  • 15 Sleator RD. The human superorganism-of microbes and men. Med Hypotheses 2010; 74: 214-215
  • 16 Salvucci E. The human -microbiome superorganism and its modulation to restore health. Int J Food Sci Nutr 2019; 70: 781-795
  • 17 Whitmont RD. The human microbiome superorganism, conventional medicine and homeopathy. Homeopathy 2020; 109: 248-255
  • 18 Tasche Y, Saavedra JM. Introduction to the special issue: “The Brain-Gut Axis”. Cell Mol Neurobiol 2022; 42: 311-313
  • 19 Zhou D, Wang Q, Liu H. Coronavirus disease 2019 and the gut-lung axis. J Infect Dis 2021; 113: 300-307
  • 20 Fairrass KM, Lovatt J, Barberio B. et al. Bidirectional brain-gut axis effects influence mood and prognosis in IBD: a systematic review and meta-analysis. Gut 2021; DOI: 10.1136/gutjnl-2021-325985.
  • 21 Magne F, Gotteland M, Gauthier RL. et al. The firmicutes/bacteroides ratio: a relevant marker of gut dysbiosis in obese patients?. Nutrients 2020; 12: 1-17
  • 22 Martinez JE, Vargas A, Perez-Sanchez T. et al. Human microbiota network: Unveiling potential crosstalk between the different microbiota ecosystems and their role in health and disease. Nutrients 2021; 13: 1-21
  • 23 Willing BP, Gill N, Finlay BB. The role of the immune system in regulating the microbiota. Gut Microbes 2010; 1: 213-223
  • 24 Jandhyala SM, Talukdar R, Subraanyam C. et al. Role of the normal gut microbiota. World J Gastroenterol 2015; 21: 8787-8803
  • 25 Burton CL, Chhabra SR, Swift S. et al. The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 2002; 70: 5913-5923
  • 26 Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6: 111-120
  • 27 Ma Y, Chen H, Lan C. et al. Help, hope and hype: ethical considerations of human microbe research and application. Protein Cell 2018; 9: 404-415
  • 28 Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord 2016; 17: 485-498
  • 29 Bargiel P, Szczuko M, Stachowska L. et al. Microbiome metabolites and thyroid dysfunction. J Clin Med 2021; 10: 3609
  • 30 Knezevic J, Starchl C, Tavaberisha A. et al. Thyroid-gut axis: how does the microbiota influence thyroid function?. Nutrients 2020; 12: 1769
  • 31 Su X, Zhao Y, Li Y. et al. Gut dysbiosis is associated with primary Hypothyroidism with interaction on gut-thyroid axis. Clin Sci (London) 2020; 134: 1521-1535
  • 32 Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis clinical and diagnostic criteria. Autoimmun Rev 2014; 13: 391-397
  • 33 Cayres LCF, Vitela de Salis LV, Rogrigues GSP. et al. Detection of alterations in the gut microbiota and intestinal permeability in patients with Hashimoto thyroiditis. Front Immunol 2021; 12: 1-12
  • 34 Frolich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metabol 2019; 34: 479-490
  • 35 Chiovato L, Magri F, Carle A. Hypothyroidism in context: Where we’ve been and where we’re going. Adv ther 2019; 36: S47-S58
  • 36 Taylor PN, Albrecht D, Scholz A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol 2018; 14: 301-316
  • 37 Ajjian RA, Weetman AP. The pathogenesis of Hashimoto’s thyroiditis: further developments in our understanding. Horm Metab Res 2015; 47: 702-719
  • 38 Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT) and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients points that they need more investigation. Hell J Nucl Med 2017; 20: 51-56
  • 39 Song Y, Zhao M, Zhang H. et al. Thyroid-stimulating hormone levels are inversely associated with serum total bile acids levels: a cross-sectional study. Endocr Pract 2016; 22: 420-426
  • 40 Ishaq HM, Mohammad IS, Shahzad M. et al. Molecular estimation of alteration in intestinal composition in Hashimoto ‘thyroiditis patients. Biomed Pharmacother 2017; 95: 865-874
  • 41 Zhao F, Feng J, Li J. et al. Alterations of the gut microbiota in Hashimoto's thyroiditis patients. Thyroid 2018; 28: 175-186
  • 42 Koch KN, Muller A. Helicobacter pylori activates the TLR2/NLRP3/caspace-1/IL-18 axis to induce regulatory T-cells, establishes persistent infection and promote tolerance to allergens. Gut microbes 2015; 6: 382-387
  • 43 Seo SU, Kamada N, Munoz-Planillo R. et al. Distinct commensals induce interleukin-1β via NLRP-3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 2015; 42: 744-755
  • 44 Masetti G, Moshkelgosha S, Kohling HL. et al. Gut microbiota in experimental murine model of Graves’ orbitopathy established in different environments may modulate clinical presentation of disease. Microbiome 2018; 6: 1-15
  • 45 Ishaq HM, Mohammad IS, Guo H. et al. Molecular alteration analysis of human gut microbial composition in Graves’ disease patients. Intern. J Biol Sci 2018; 14: 1558-1570
  • 46 Legakis NI, Christakis GB. Anaerobic infections and anaerobes. Paschalidis Medical Publications PX Paschalidis, Athens. 1997
  • 47 Brown DG, Round JL. Friends in low places: intestinal commensals limit colitis through molecular mimicry. Cell 2017; 171: 503-505
  • 48 Jiang W, Yu X, Kosik R-O. et al. Gut microbiota may play a significant role in the pathogenesis of Graves’ disease. Thyroid 2021; 31: 810-820
  • 49 Jenq RR, Taur Y, Devlin SM. et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant 2015; 21: 1373-1383
  • 50 Li A, Li T, Gao X. et al. Gut microbiome alterations in patients with thyroid nodules. Front Cell Infect Microbiol 2021; 11 : 643968. doi: 10.3389/fcimb.2021.643968
  • 51 Duncan SH, Louis P, Flint HJ. Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 2004; 70: 5810-5817
  • 52 Miettinen Μ, Lehtonen A, Julkunen I. et al. Lactobacilli and Streptococci activate NF-kappa B and STAT signaling pathways in human macrophages. J Immunol 2000; 164: 3733-3740
  • 53 Bundloss MX, Olsan EE, Rivera-Chavez F. et al. Microbiota-activated PPAR-gamma signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 2017; 357: 570-575
  • 54 Pan X, Fang X, Wang F. et al. Butyrate ameliorates caerulein-induced acute pancreatitis and associated intestinal injury by tissue-specific mechanisms. Br J Pharmacol 2019; 176: 4461-4466
  • 55 Cornejo-Parejo I, Ruiz-Limon P, Gomez-Perez AM. et al. Differential microbial pattern description in subjects with autoimmune -based thyroid diseases. A pilot. J Pers Med 2020; 10: 1-13
  • 56 Moshkelgosha S, Verhasselt H-L, Masetti G. et al. Modulating gut microbiota in a mouse model of Graves’ orbitopathy and its impact on induced disease. Microbiome 2021; 9: 45
  • 57 McLachlan SM, Rapoport B. Breaking tolerance to thyroid antigens: changing concepts in thyroid autoimmunity. Endocr Rev 2014; 35: 59-105
  • 58 Hiippala K, Kainulainen V, Kalliomäki M. et al. Mucosal prevalence and interactions with the epithelium indicate commensalism of Sutterella spp. Front Microbiol 2016; 7: 1706
  • 59 Atarashi K, Tanoue T, Ando M. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163: 367-380
  • 60 Pianta A, Chiumento G, Ramsden K. Identification of novel, immunogenic HLA-DR-presented prevotella copri peptides in patients with rheumatoid arthritis. Arthritis Rheumatol 2021; 73: 2200-2205
  • 61 Hoang JK, Lee WK, Lee M, Johnson D. et al. US features of thyroid malignancy: pearls and pitfalls. Radiographics 2007; 27: 847-860
  • 62 Hwangbo Y, Lee EK, Son HY. et al. Genome-wide association study reveals distinct genetic susceptibility of thyroid nodules from thyroid cancer. J Clin Endocrinol Metabol 2018; 103: 4384-4394
  • 63 Soriano O, Delgado G, Anguiano B. et al. Antineoplastic effect of iodine and iodide in dimethylbenz[a]anthracene-induced mammary tumors: association between lactoperoxidase and estrogen-adduct production. Endocr Relat Cancer 2011; 18: 529-539
  • 64 De La Vieja A, Santisteban P. Role of iodide metabolism in physiology and cancer. Endocr Relat Cancer 2018; 25: R225-R245
  • 65 Provenzano MJ, Fitzgerald MP, Krager K. et al. Increased iodine uptake in thyroid carcinoma after treatment with sodium butyrate and decitabine (5-Aza-dC). Otolaryngol Head Neck Surg 2007; 137: 722-728
  • 66 Zhang J, Zhang F, Zhao C. et al. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated clinical index of thyroid function. Endocrine 2019; 64: 564-574
  • 67 Trapani KM, Boghossian LJ, Caskey E. Clostridium subterminale septicemia in a patient with metastatic gastrointestinal adenocarcinoma. Case Rep Infect Dis 2018; 6031510. doi: DOI: 10.1155/2018/6031510.
  • 68 Dahmus JD, Kotler DL, Kastenberg DM. et al. The gut microbiome and colorectal cancer. A review of bacterial pathogenesis. J Gastrointest Oncol 2018; 9: 769-777
  • 69 Benitez AJ, Hoffmann C, Muir AB. et al. Inflammation-asssociated microbiota in pediatric eosinophilic esophagitis. Microbiome 2015; 3: 23