Synlett
DOI: 10.1055/a-2187-0455
account

Bismuth-Centered Radical Species: Access and Applications in ­Organic Synthesis

Sebastián Martínez
,
Funding by the Deutsche Forschungsgemeinschaft (DFG, LI2860/5-1) and the LOEWE program is gratefully acknowledged.


Abstract

Recent advances in the isolation of tamed bismuth radicals and the selective in situ generation of highly reactive bismuth radicals have set the stage for the application of these compounds in organic and organometallic synthesis and catalysis. Here, we provide a summary of the methodological approaches in the field. Important strategies for accessing bismuth radical species are presented and key examples of their applications in organic synthesis are outlined, highlighting how this class of compounds has emerged as new set of valuable tools for synthetic practitioners.

1 Introduction

2 Generation of Bismuth Radical Species by Homolysis

2.1 Temperature-Induced Homolysis

2.2 Light-Induced Homolysis

2.3 Light-/Temperature-Induced Bi–C Homolysis of Polar Oxidative Addition Complexes

3 Applications of Bismuth-Centered Radical Species in Organic Synthesis

3.1 Bismuth-Catalyzed Cycloisomerization of Iodo Olefins

3.2 Controlled Radical Polymerization Reactions

3.3 Bismuth-Promoted Pn–Pn and C–S Coupling

3.4 Bismuth-Catalyzed Dehydrocoupling of Silanes with TEMPO

3.5 Bismuth-Catalyzed C–N Coupling with Redox-Active Electrophiles

3.6 Bismuth-Catalyzed Giese-Type Coupling Reactions

3.7 Oxidative Addition of Aryl Electrophiles to Photoactive Bismuthinidenes

4 Conclusions



Publication History

Received: 23 September 2023

Accepted after revision: 06 October 2023

Accepted Manuscript online:
06 October 2023

Article published online:
16 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lichtenberg C. Radical Compounds of Antimony and Bismuth. In Encyclopedia of Inorganic and Bioinorganic Chemistry. John Wiley & Sons; Hoboken: 2020: 1-12
  • 2 Helling C, Schulz S. Eur. J. Inorg. Chem. 2020; 3209
  • 3 Moon HW, Cornella J. ACS Catal. 2022; 12: 1382
  • 4 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 5 Lyaskovskyy V, de Bruin B. ACS Catal. 2012; 2: 270
  • 6 Jahn U. Top. Curr. Chem. 2012; 320: 121
  • 7 Ishida S, Hirakawa F, Furukawa K, Yoza K, Iwamoto T. Angew. Chem. Int. Ed. 2014; 53: 11172
  • 8 Monakhov KYu, Zessin T, Linti G. Eur. J. Inorg. Chem. 2010; 322
  • 9 Shimada S, Maruyama J, Choe Y.-K, Yamashita T. Chem. Commun. 2009; 6168
  • 10 Wolf R, Fischer J, Fischer RC, Fettinger JC, Power PP. Eur. J. Inorg. Chem. 2008; 2515
  • 11 Balazs L, Breunig HJ, Lork E, Soran A, Silvestru C. Inorg. Chem. 2006; 45: 2341
  • 12 Balázs L, Breunig HJ, Lork E. Z. Naturforschung, B: J. Chem. Sci. 2005; 60: 180
  • 13 Balazs L, Breunig HJ, Lork E, Silvestru C. Eur. J. Inorg. Chem. 2003; 1361
  • 14 Balázs G, Breunig HJ, Lork E. Organometallics 2002; 21: 2584
  • 15 Haak J, Krüger J, Abrosimov NV, Helling C, Schulz S, Cutsail GE. III. Inorg. Chem. 2022; 61: 11173
  • 16 Cutsail GE. Dalton Trans. 2020; 49: 12128
  • 17 Schwamm RJ, Harmer JR, Lein M, Fitchett CM, Granville S, Coles MP. Angew. Chem. Int. Ed. 2015; 54: 10630
  • 18 Schwamm RJ, Lein M, Coles MP, Fitchett CM. Angew. Chem. Int. Ed. 2016; 55: 14798
  • 19 Ganesamoorthy C, Helling C, Wölper C, Frank W, Bill E, Cutsail GE, Schulz S. Nat. Commun. 2018; 9: 87
  • 20 Krüger J, Wölper C, Schulz S. Inorg. Chem. 2020; 59: 11142
  • 21 Schwamm RJ, Lein M, Coles MP, Fitchett CM. J. Am. Chem. Soc. 2017; 139: 16490
  • 22 Heine J, Peerless B, Dehnen S, Lichtenberg C. Angew. Chem. Int. Ed. 2023; 62: e202218771
  • 23 Weinert HM, Wölper C, Haak J, Cutsail EG, Schulz S. Chem. Sci. 2021; 12: 14024
  • 24 Sasamori T, Mieda E, Nagahora N, Sato K, Shiomi D, Takui T, Hosoi Y, Furukawa Y, Takagi N, Nagase S, Tokitoh N. J. Am. Chem. Soc. 2006; 128: 12582
  • 25 Majhi PK, Ikeda H, Sasamori T, Tsurugi H, Mashima K, Tokitoh N. Organometallics 2017; 36: 1224
  • 26 Yang X, Reijerse EJ, Nöthling N, SantaLucia DJ, Leutzsch M, Schnegg A, Cornella J. J. Am. Chem. Soc. 2023; 145: 5618
  • 27 Krüger J, Haak J, Wölper C, Cutsail GE. I, Haberhauer G, Schulz S. Inorg. Chem. 2022; 61: 5878
  • 28 Mukhopadhyay DP, Schleier D, Wirsing S, Ramler J, Kaiser D, Reusch E, Hemberger P, Preitschopf T, Krummenacher I, Engels B, Fischer I, Lichtenberg C. Chem. Sci. 2020; 11: 7562
  • 29 Hornung B, Bodi A, Pongor CI, Gengeliczki Z, Baer T, Sztáray B. J. Phys. Chem. A 2009; 113: 8091
  • 30 Lorberth J, Massa W, Wocadlo S, Sarraje I, Shin S.-H, Li X.-W. J. Organomet. Chem. 1995; 485: 149
  • 31 Amberger E. Chem. Ber. 1961; 94: 1447
  • 32 Lichtenberg C, Pan F, Spaniol TP, Englert U, Okuda J. Angew. Chem. Int. Ed. 2012; 51: 13011
  • 33 Ashe AJ. I, Ludwig EG. Jr, Oleksyszyn J. Organometallics 1983; 2: 1859
  • 34 Clegg W, Compton NA, Errington RJ, Fisher GA, Green ME, Hockless DC. R, Norman NC. Inorg. Chem. 1991; 30: 4680
  • 35 Wallis JM, Müller G, Schmidbaur H. J. Organomet. Chem. 1987; 325: 159
  • 36 Oberdorf K, Hanft A, Xie X, Bickelhaupt FM, Poater J, Lichtenberg C. Chem. Sci. 2023; 14: 5214
  • 37 Hyeon J.-Y, Lisker M, Silinskas M, Burte E, Edelmann FT. Chem. Vap. Deposition 2005; 11: 213
  • 38 Price SJ. W, Trotman-Dickenson AF. Trans. Faraday Soc. 1958; 54: 1630
  • 39 Long LH, Sackman JF. Trans. Faraday Soc. 1954; 50: 1177
  • 40 Price SJ. W. Decomposition of Inorganic and Organometallic Compounds. In Comprehensive Chemical Kinetics, Vol. 4, Chap. 4. Bamford CH, Tipper CF. H. Elsevier; Amsterdam: 1972: 197-257
  • 41 Schwamm RJ, Lein M, Coles MP, Fitchett CM. Chem. Commun. 2018; 54: 916
  • 42 Hanna TA, Rieger AL, Rieger PH, Wang X. Inorg. Chem. 2002; 41: 3590
  • 43 Hanna TA. Coord. Chem. Rev. 2004; 248: 429
  • 44 Casely IJ, Ziller JW, Fang M, Furche F, Evans WJ. J. Am. Chem. Soc. 2011; 133: 5244
  • 45 Limberg C. Top. Organomet. Chem. 2007; 22: 79
  • 46 Limberg C. Angew. Chem. Int. Ed. 2003; 42: 5932
  • 47 Lichtenberg C. Angew. Chem. Int. Ed. 2016; 55: 484
  • 48 Yang X, Reijerse EJ, Bhattacharyya K, Leutzsch M, Kochius M, Nöthling N, Busch J, Schnegg A, Auer AA, Cornella J. J. Am. Chem. Soc. 2022; 144: 16535
  • 49 Ramler J, Krummenacher I, Lichtenberg C. Angew. Chem. Int. Ed. 2019; 58: 12924
  • 50 Pang Y, Nöthling N, Leutzsch M, Kang L, Bill E, van Gastel M, Reijerse E, Goddard R, Wagner L, SantaLucia D, DeBeer S, Neese F, Cornella J. Science 2023; 380: 1043
  • 51 Ramler J, Krummenacher I, Lichtenberg C. Chem. Eur. J. 2020; 26: 14551
  • 52 Ramler J, Schwarzmann J, Stoy A, Lichtenberg C. Eur. J. Inorg. Chem. 2022; e202100934
  • 53 Šimon P, de Proft F, Jambor R, Růžička A, Dostál L. Angew. Chem. Int. Ed. 2010; 49: 5468
  • 54 Mato M, Spinnato D, Leutzsch M, Moon HW, Reijerse EJ, Cornella J. Nat. Chem. 2023; 15: 1138
  • 55 Cohen T, Gibney H, Ivanov R, Yeh EA.-H, Marek I, Curran DP. J. Am. Chem. Soc. 2007; 129: 15405
  • 56 Curran DP, Kim D. Tetrahedron Lett. 1986; 27: 5821
  • 57 Curran DP, Chen MH, Kim D. J. Am. Chem. Soc. 1989; 111: 6265
  • 58 Newcomb M, Curran DP. Acc. Chem. Res. 1988; 21: 206
  • 59 Yamago S, Kayahara E, Kotani M, Ray B, Kwak Y, Goto A, Fukuda T. Angew. Chem. 2007; 119: 1326
  • 60 Kayahara E, Yamago S. J. Am. Chem. Soc. 2009; 131: 2508
  • 61 Oberdorf K, Hanft A, Ramler J, Krummenacher I, Bickelhaupt FM, Poater J, Lichtenberg C. Angew. Chem. Int. Ed. 2021; 60: 6441
  • 62 Oberdorf K, Grenzer P, Wieprecht N, Ramler J, Hanft A, Rempel A, Stoy A, Radacki K, Lichtenberg C. Inorg. Chem. 2021; 60: 19086
  • 63 Hardman NJ, Twamley B, Power PP. Angew. Chem. Int. Ed. 2000; 39: 2771
  • 64 Birnthaler D, Narobe R, Lopez-Berguno E, Haag C, König B. ACS Catal. 2023; 13: 1125
  • 65 Mato M, Bruzzese PC, Takahashi F, Leutzsch M, Reijerse EJ, Schnegg A, Cornella J. J. Am. Chem. Soc. 2023; 145: 18742