Subscribe to RSS
DOI: 10.1055/a-2186-1485
Practical Site-Selective Oxidation of Glycosides with Palladium(II) Acetate/Neocuproine
I.M.A.B. and S.C.M. thank ARC-CBBC for funding. N.M. thanks NWO (project number 718.016.001) for funding.
Abstract
The palladium-catalyzed oxidation of the secondary C(3) hydroxy group of glycopyranosides has set a mark in the selective modification of unprotected carbohydrates. The preformed catalyst [(neocuproine)PdOAc]2(OTf)2 oxidizes di- and oligosaccharides, as well as monosaccharides. Here, we provide a more convenient protocol for this reaction in which the Pd catalyst is formed in situ from Pd(OAc)2 and neocuproine in methanol at 50 °C. Together with a simplified product isolation, this protocol was applied to a series of mono- and disaccharides, and has been applied on a 10 gram scale. The protocol is also valuable as a screening method to determine whether more-extensive studies using the preformed catalyst are worthwhile.
Keywords
glycosides - oxidation - palladium catalysis - neocuproine - site-selectivity - regioselectivitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2186-1485.
- Supporting Information
Publication History
Received: 12 September 2023
Accepted after revision: 04 October 2023
Accepted Manuscript online:
04 October 2023
Article published online:
09 November 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Seebach D. Angew. Chem. Int. Ed. 2011; 50: 96
- 2 Tojo G, Fernández MI. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York: 2006: 255
- 3 Xu C, Zhang C, Li H, Zhao X, Song L, Li X. Catal. Surv. Asia 2016; 20: 13
- 4 Modern Oxidation Methods . Bäckvall J.-E. Wiley-VCH; Weinheim: 2004
- 5 Furukawa K, Shibuya M, Yamamoto Y. Org. Lett. 2015; 17: 2282
- 6 Zhao M, Li J, Mano E, Song Z, Tschaen DM, Grabowski EJ. J, Reider PJ. J. Org. Chem. 1999; 64: 2564
- 7 Epp JB, Widlanski TS. J. Org. Chem. 1999; 64: 293
- 8 Shibuya M, Sato T, Tomizawa M, Iwabuchi Y. Chem. Commun. 2009; 1739
- 9 Lee W, Youn J.-H, Kang SH. Chem. Commun. 2013; 49: 5231
- 10 Schämann M, Schäfer HJ. Eur. J. Org. Chem. 2003; 351
- 11 Eisink N, Minnaard A, Witte M. Synthesis 2017; 49: 822
- 12 Marinus N, Eisink NN. H. M, Reintjens NR. M, Dijkstra RS, Havenith RW. A, Minnaard AJ, Witte MD. Chem. Eur. J. 2023; e202300318
- 13 Painter RM, Pearson DM, Waymouth RM. Angew. Chem. Int. Ed. 2010; 49: 9456
- 14 Chung K, Banik SM, De Crisci AG, Pearson DM, Blake TR, Olsson JV, Ingram AJ, Zare RN, Waymouth RM. J. Am. Chem. Soc. 2013; 135: 7593
- 15 Jäger M, Hartmann M, de Vries JG, Minnaard AJ. Angew. Chem. Int. Ed. 2013; 52: 7809
- 16 Eisink NN. H. M, Lohse J, Witte MD, Minnaard AJ. Org. Biomol. Chem. 2016; 14: 4859
- 17 Reintjens NR. M, Yakovlieva L, Marinus N, Hekelaar J, Nuti F, Papini AM, Witte MD, Minnaard AJ, Walvoort MT. C. Eur. J. Org. Chem. 2022; 2022: e202200677
- 18 Wan IC, Hamlin TA, Eisink NN. H. M, Marinus N, Boer C, Vis CA, Codée JD. C, Witte MD, Minnaard AJ, Bickelhaupt FM. Eur. J. Org. Chem. 2021; 2021: 632
- 19 Chung K, Waymouth RM. ACS Catal. 2016; 6: 4653
- 20 Marinus N, Walvoort MT. C, Witte MD, Minnaard AJ, van Dijk HM. In Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 5, Chap. 16 Wrodnigg T. M., Stütz A., CRC Press: Boca Raton, 2021
- 21 William JM, Kuriyama M, Onomura O. Adv. Synth. Catal. 2014; 356: 934
- 22 Feng L, Zhang S, Sun X, Dong A, Chen Q. J. Mater. Sci. 2018; 53: 15025
- 23 Maki T, Iikawa S, Mogami G, Harasawa H, Matsumura Y, Onomura O. Chem. Eur. J. 2009; 15: 5364
- 24 William JM, Kuriyama M, Onomura O. RSC Adv. 2013; 3: 19247
- 25 Muramatsu W. Org. Lett. 2014; 16: 4846
- 26 Kaspar M, Kudova E. J. Org. Chem. 2022; 87: 9157
- 27 Zhang J, Eisink NN. H. M, Witte MD, Minnaard AJ. J. Org. Chem. 2019; 84: 516
- 28 Marinus N, Tahiri N, Duca M, Mouthaan LM. C. M, Bianca S, van den Noort M, Poolman B, Witte MD, Minnaard AJ. Org. Lett. 2020; 22: 5622
- 29 Zhang J, Reintjens NR. M, Dhineshkumar J, Witte MD, Minnaard AJ. Org. Lett. 2022; 24: 5339
- 30 Reintjens NR. M, Witte MD, Minnaard AJ. Org. Biomol. Chem. 2023; 21: 5098
- 31 Ahmadian-Moghaddam M, Reintjens NR. M, Witte MD, Minnaard AJ. Eur. J. Org. Chem. 2023; 26: e202300281
- 32 ten Brink G.-J, Arends IW. C. E, Hoogenraad M, Verspui G, Sheldon RA. Adv. Synth. Catal. 2003; 345: 1341
- 33 Conley NR, Labios LA, Pearson DM, McCrory CC. L, Waymouth RM. Organometallics 2007; 26: 5447
- 34 Bailie DS, Clendenning GM. A, McNamee L, Muldoon MJ. Chem. Commun. 2010; 46: 7238
- 35 Lybaert J, Tehrani KA, De Wael K. Electrochim. Acta 2017; 247: 685
- 36 Amatore C, Cammoun C, Jutand A. Synlett 2007; 2173
- 37 Dornan LM, Muldoon MJ. Catal. Sci. Technol. 2015; 5: 1428
- 38 Vu ND, Guicheret B, Duguet N, Métay E, Lemaire M. Green Chem. 2017; 19: 3390
- 39 Wang H, Vu ND, Chen G.-R, Métay E, Duguet N, Lemaire M. Green Chem. 2021; 23: 1154
- 40 Because of the low solubility of 1 in acetonitrile, we used a 9:1 (v/v) mixture of acetonitrile and water.
- 41 To a stock solution of methyl α-d-glucopyranoside (1; 45 mg, 0.23 mmol, 1 equiv) and BQ (26 mg, 0.24 mmol, 1.05 equiv) in MeOH (0.1 M) or 9:1 MeCN–H2O (0.1 M) was added catalyst 3 (5 mg, 5 μmol, 2 mol%) or 4 (2 mg, 5 μmol, 2 mol%), and the mixture was stirred for 24 h at rt under air. A portion of the mixture was diluted with CD3OD and analyzed by 1H NMR. The conversion was calculated by dividing the product integral by the sum of the product and starting material integrals. The TON was calculated by dividing the conversion by the mol% [Pd]. The TOF was calculated by using the conversion after 0.5 h by dividing the TON by the reaction time.
- 42 Kütt A, Tshepelevitsh S, Saame J, Lõkov M, Kaljurand I, Selberg S, Leito I. Eur. J. Org. Chem. 2021; 2021: 1407
- 43 Miguel EL. M, Silva PL, Pliego JR. J. Phys. Chem. B 2014; 118: 5730
- 44 Compounds 6–16; General ProcedureBQ (114 mg, 1.05 mmol, 1.05 equiv), neocuproine (10.5 mg, 50 μmol, 5 mol%), and Pd(OAc)2 (11.2 mg, 50 μmol, 5 mol%) were added to a solution of the appropriate substrate (1.0 mmol, 1 equiv) in MeOH (0.2 M). The reactions were monitored by 1H NMR analysis of a 50 μL portion of the reaction mixture diluted with CD3OD. After stirring overnight, the mixture was concentrated in vacuo and the residue was dissolved in H2O (15 mL; Milli-Q), and the solution was washed with Et2O (2 × 30 mL). The aqueous layer was filtered twice through a 1.0 μm pore-size syringe filter and once through a 0.45 μm pore-size syringe filter, then concentrated in vacuo.
- 45 Characterization data for 8: amorphous solid; yield: 0.14 g, 0.69 mmol (77%). 1H NMR (400 MHz, CD3OD): d = 5.39 (d, J = 4.2 Hz, 1 H), 4.20–4.14 (m, 1 H), 3.95 (dt, J = 12.4, 6.2 Hz, 1 H), 3.89–3.77 (m, 3 H), 2.88 (ddd, J = 13.9, 4.6, 1.1 Hz, 1 H), 2.43 (dd, J = 13.9, 0.9 Hz, 1 H), 1.15 (dd, J = 12.2, 6.2 Hz, 6 H). 13C NMR (101 MHz, CD3OD): d = 207.6, 97.9, 76.6, 74.2, 70.0, 62.6, 47.1, 23.5, 21.4. HRMS(ESI–): m/z [M–H]– calcd for C9H15O5: 203.0925; found: 203.0925.
- 46 Characterization data for 11: amorphous solid; yield: 0.15 g, 0.85 mmol (85%) [+ 20 mg (0.11 mmol) starting material]. 1H NMR (400 MHz, CD3OD): δ = 4.99 (d, J = 4.4 Hz, 1 H), 4.42 (dd, J = 4.4, 1.5 Hz, 1 H), 3.89 (dd, J = 9.4, 1.4 Hz, 1 H), 3.76–3.68 (m, 1 H), 3.38 (s, 4 H), 1.39 (d, J = 6.2 Hz, 3 H). 13C NMR (101 MHz, CD3OD): δ = 206.5, 103.6, 78.8, 76.1, 72.0, 55.7, 18.9. HRMS(ESI–): m/z [M–H]– calcd for C7H11O5: 175.0612; found: 175.0612.
- 47 Characterization data for 12: amorphous solid; yield: 0.15 g 0.74 mmol (85%) [+ starting material: 15 mg (7 μmol)]. 1H NMR (400 MHz, CD3OD): δ = 5.11 (d, J = 4.2 Hz, 1 H), 4.49 (dd, J = 4.1, 1.2 Hz, 1 H), 4.45 (d, J = 9.8 Hz, 1 H), 4.08 (d, J = 9.8 Hz, 1 H), 3.44 (d, J = 4.8 Hz, 3 H). 13C NMR (101 MHz, CD3OD) δ = 205.4, 104.3, 76.0, 75.0, 75.0, 56.2. HRMS (ESI–): m/z [M–H]– calcd for C7H9O7: 205.0354; found: 205.0354.
- 48 Characterization data for 13: amorphous solid; yield: 0.22 g, 0.73 mmol (73%). 1H NMR (400 MHz, CD3OD): δ = 5.08 (d, J = 4.3 Hz, 1 H), 4.41 (dd, J = 4.2, 1.2 Hz, 1 H), 4.27 (dd, J = 9.7, 1.2 Hz, 1 H), 4.06–3.92 (m, 2 H), 3.68 (ddd, J = 9.7, 4.4, 2.0 Hz, 1 H), 3.43 (s, 3 H), 0.98 (s, 9 H), 0.16 (s, 6 H). 13C NMR (101 MHz, CD3OD): δ = 207.0, 103.7, 76.8, 76.0, 73.2, 63.9, 55.6, 26.4, –5.1, –5.2. HRMS (ESI): m/z [M + Na]+ calcd for C13H26NaO6Si: 329.1391; found: 329.1391.
- 49 Eisink NN. H. M, Witte MD, Minnaard AJ. ACS Catal. 2017; 7: 1438
- 50 Zhiyuan Z, Shaoqiang H, Zhaolan Z, Yanning SU, Yan RE. N. WO 2016041470 2016
- 51 Balkanski S. Pharmacia (Sofia, Bulg.) 2021; 68: 591
- 52 Characterization data for 16: colorless oil; yield: 0.25 g, 0.62 mmol (62%). 1H NMR (400 MHz, CD3OD): δ = 7.42–7.35 (m, 3 H), 7.09 (d, J = 8.6 Hz, 2 H), 6.79 (d, J = 8.6 Hz, 2 H), 4.39 (d, J = 10.0 Hz, 1 H), 4.23 (s, 2 H), 4.11–3.90 (m, 5 H), 3.82 (dd, J = 12.1, 4.7 Hz, 1 H), 3.49 (ddd, J = 10.0, 4.8, 1.9 Hz, 1 H), 1.35 (t, J = 7.0 Hz, 4 H). 13C NMR (101 MHz, CD3OD): δ = 208.4, 158.9, 140.1, 139.3, 135.0, 132.8, 131.7, 130.8, 130.3, 128.0, 115.4, 85.2, 84.7, 78.6, 74.0, 64.4, 62.9, 39.2, 15.2. HRMS(ESI–): m/z [M–H]– calcd for C21H22ClO6: 405.1110 and 407.1081; found: 405.1105 and 407.1076.
- 53 Nakamura K, Zhu S, Komatsu K, Hattori M, Iwashima M. Biol. Pharm. Bull. 2019; 42: 417
- 54 Characterization data for 20: isolated as an oil, together with 21; yield: 51 mg, 0.11 mmol (48%). 1H NMR (400 MHz, CD3OD): δ = 8.13 (s, 1 H), 8.03–7.96 (m, 1 H), 7.41–7.31 (m, 2 H), 6.91–6.82 (m, 3 H), 5.80 (s, 1 H), 4.79 (d, J = 9.3 Hz, 1 H), 4.09–3.92 (m, 2 H), 3.91–3.85 (m, 1 H), 3.20 (s, 3 H). 13C NMR (101 MHz, CD3OD): δ = 177.8, 173.5, 162.9, 158.7, 156.2, 154.2, 131.3, 127.9, 125.8, 124.0, 117.9, 117.5, 116.2, 110.1, 87.6, 86.1, 83.3, 74.1, 59.6, 52.6. HRMS (ESI): m/z [M–H]– calcd for C22H21O10 [M+H]+: 445.1129; found: 445.1124.
- 55 Characterization data for 23: isolated as an oil together with 24; yield: 96 mg, 0.32 mmol (32%). 1H NMR (400 MHz, CD3OD): δ = 8.44 (d, J = 2.7 Hz, 1 H), 8.10 (dd, J = 9.0, 2.8 Hz, 1 H), 6.94 (d, J = 9.0 Hz, 1 H), 4.82 (d, J = 10.0 Hz, 1 H), 4.54 (dd, J = 10.0, 1.6 Hz, 1 H), 4.44 (dd, J = 10.0, 1.5 Hz, 1 H), 3.95 (dd, J = 12.3, 1.9 Hz, 1 H), 3.84 (dd, J = 12.3, 4.8 Hz, 1 H), 3.55 (ddd, J = 10.0, 4.8, 2.0 Hz, 1 H). 13C NMR (101 MHz, CD3OD): δ = 208.4, 163.0, 141.9, 127.3, 126.4, 126.0, 116.6, 84.8, 78.8, 78.1, 74.0, 62.9. HRMS (ESI–): m/z [M–H]– calcd for C12H12NO8: 298.0568; found: 298.0563.
- 56 Characterization data for 24: isolated as an oil together with 23; yield: 26 mg, 90 μmol (9%). 1H NMR (400 MHz, CD3OD): δ = 8.22 (d, J = 2.8 Hz, 1 H), 8.08 (dd, J = 8.9, 2.8 Hz, 1 H), 6.88 (d, J = 9.1 Hz, 1 H), 5.37 (s, 1 H), 4.43 (d, J = 9.3 Hz, 1 H), 4.02 (d, J = 10.3 Hz, 1 H), 3.94–3.79 (m, 2 H), 3.68 (t, J = 9.4 Hz, 1 H). 13C NMR (101 MHz, CD3OD): δ = 202.1, 162.0, 141.8, 126.2, 125.2, 124.6, 115.5, 82.7, 81.3, 78.6, 76.2, 62.7. HRMS (ESI–): m/z [M–H]– calcd for C12H12NO8: 298.0568; found: 298.0564.