Subscribe to RSS
DOI: 10.1055/a-2178-5022
Optimizing the number of valid measurements for the attenuation coefficient to assess hepatic steatosis in MAFLD patients: A study of 139 patients who underwent liver biopsy
Optimierung der Anzahl gültiger Messungen des Dämpfungskoeffizienten zur Beurteilung der Lebersteatose bei Patienten mit MAFLD: Eine Studie an 139 Patienten mit Leberbiopsie Supported by: National Natural Science Foundation of China 81873897Supported by: Shanghai Science and Technology Plan Project Funding 22Y11911500
Abstract
Purpose We investigated the optimal number of valid measurements (VMs) for the attenuation coefficient (AC) to assess liver steatosis using attenuation imaging (ATI) and explored factors that may affect AC measurement in patients with metabolic dysfunction-associated fatty liver disease (MAFLD).
Materials and Methods A total of 139 patients with MAFLD who underwent ATI and liver biopsy were enrolled. Hepatic steatosis was graded as S0–3 according to the SAF scoring system. The AC values from 1, 2, 3, 5, and 7 VMs were compared with the degree of liver steatosis. The correlation between AC values from different VMs was analyzed. The diagnostic performance of AC from different VMs at each steatosis grade was compared. The factors related to AC were identified using linear regression analysis.
Results The mean AC values from 1, 2, 3, 5, and 7 VMs were not significantly different between grades S0–3 (p=n.s. for all). Bland-Altman analysis showed the mean difference in AC values of 3 VMs and 7 VMs was 0.003 dB/cm/MHz, which was smaller compared with 2 VMs, and close to 5 VMs. The intraclass correlation coefficients of AC were all > 0.90 among different VM groups. AC values from different VMs all significantly predicted steatosis grade ≥S1, ≥S2, and S3 without significant statistical differences (p=n.s. for all). The multivariate analysis showed that the hepatic steatosis grade and triglyceride level were factors independently associated with AC.
Conclusion Three valid measurements of AC may be adequate to ensure the accuracy and reproducibility of hepatic steatosis assessment. The degree of liver steatosis and the triglyceride level significantly affected AC values.
Zusammenfassung
Ziel Wir untersuchten die optimale Anzahl gültiger Messungen („valid measurements“, VMs) des Dämpfungskoeffizienten („attenuation coefficient“, AC) zur Beurteilung der Lebersteatose mittels Attenuation-Imaging (ATI) und untersuchten Faktoren, die bei Patienten mit metabolisch-assoziierter Fettlebererkrankung (MAFLD) die AC-Messung beeinflussen können.
Material und Methoden Insgesamt 139 Patienten mit MAFLD, die sich einer ATI und einer Leberbiopsie unterzogen, wurden in die Studie aufgenommen. Die hepatische Steatose wurde nach dem SAF-Score als S0–3 eingestuft. Die AC-Werte von 1, 2, 3, 5 und 7 VMs wurden mit dem Grad der Lebersteatose verglichen. Die Korrelation zwischen den AC-Werten der verschiedenen VMs wurde analysiert. Die diagnostische Leistung des AC aus verschiedenen VMs wurde bei jedem Steatosegrad verglichen. Die Faktoren, die mit dem AC zusammenhängen, wurden mithilfe einer linearen Regressionsanalyse ermittelt.
Ergebnisse Die mittleren AC-Werte von 1, 2, 3, 5 und 7 VMs unterschieden sich nicht signifikant zwischen den Graden S0–3 (p=n.s. für alle). Die Bland-Altman-Analyse zeigte, dass der mittlere Unterschied der AC-Werte von 3 VMs und 7 VMs 0,003 dB/cm/MHz betrug, was im Vergleich zu 2 VMs geringer war und nahe an 5 VMs lag. Die Intraklassen-Korrelationskoeffizienten der AC-Werte waren alle > 0,90 zwischen den verschiedenen VMs-Gruppen. Die AC-Werte der verschiedenen VMs sagten alle signifikant den Steatosegrad ≥S1, ≥S2 und S3 voraus, ohne signifikante statistische Unterschiede (p=n.s. für alle). Die multivariate Analyse zeigte, dass der Grad der Lebersteatose und der Triglyzeridspiegel Faktoren waren, die unabhängig voneinander mit dem AC assoziiert waren.
Schlussfolgerung Drei gültige Messungen des AC können ausreichen, um die Genauigkeit und Reproduzierbarkeit der Bewertung der Lebersteatose zu gewährleisten. Der Grad der Lebersteatose und der Triglyzeridspiegel beeinflussten die AC-Werte signifikant.
Keywords
Metabolic dysfunction-associated fatty liver disease - liver steatosis - attenuation imaging - attenuation coefficient - Metabolic dysfunction-associated steatotic liver diseasePublication History
Received: 22 August 2022
Accepted after revision: 17 August 2023
Article published online:
11 December 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Eslam M, Sanyal AJ, George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158: 1999-2014.e1991 DOI: 10.1053/j.gastro.2019.11.312. (PMID: 32044314)
- 2 Eslam M, Newsome PN, Sarin SK. et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020; 73: 202-209 DOI: 10.1016/j.jhep.2020.03.039. (PMID: 32278004)
- 3 Brunt EM. Pathology of fatty liver disease. Mod Pathol 2007; 20: S40-48 DOI: 10.1038/modpathol.3800680. (PMID: 20078219)
- 4 Yeh MM, Brunt EM. Pathological features of fatty liver disease. Gastroenterology 2014; 147: 754-764 DOI: 10.1053/j.gastro.2014.07.056. (PMID: 25109884)
- 5 Sun DQ, Jin Y, Wang TY. et al. MAFLD and risk of CKD. Metabolism 2021; 115: 154433 DOI: 10.1016/j.metabol.2020.154433. (PMID: 33212070)
- 6 Davis TME. Diabetes and metabolic dysfunction-associated fatty liver disease. Metabolism 2021; 123: 154868 DOI: 10.1016/j.metabol.2021.154868. (PMID: 34400217)
- 7 Drożdż K, Nabrdalik K, Hajzler W. et al. Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients 2021; 14 DOI: 10.3390/nu14010103.
- 8 Goodman ZD. Grading and staging systems for inflammation and fibrosis in chronic liver diseases. J Hepatol 2007; 47: 598-607 DOI: 10.1016/j.jhep.2007.07.006. (PMID: 17692984)
- 9 Leoni S, Tovoli F, Napoli L. et al. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J Gastroenterol 2018; 24: 3361-3373 DOI: 10.3748/wjg.v24.i30.3361.
- 10 Hsu PK, Wu LS, Yen HH. et al. Attenuation Imaging with Ultrasound as a Novel Evaluation Method for Liver Steatosis. J Clin Med 2021; 10 DOI: 10.3390/jcm10050965.
- 11 Dioguardi Burgio M, Ronot M, Reizine E. et al. Quantification of hepatic steatosis with ultrasound: promising role of attenuation imaging coefficient in a biopsy-proven cohort. Eur Radiol 2020; 30: 2293-2301 DOI: 10.1007/s00330-019-06480-6.
- 12 Bae JS, Lee DH, Lee JY. et al. Assessment of hepatic steatosis by using attenuation imaging: a quantitative, easy-to-perform ultrasound technique. Eur Radiol 2019; 29: 6499-6507 DOI: 10.1007/s00330-019-06272-y. (PMID: 31175413)
- 13 Sugimoto K, Moriyasu F, Oshiro H. et al. The Role of Multiparametric US of the Liver for the Evaluation of Nonalcoholic Steatohepatitis. Radiology 2020; 296: 532-540 DOI: 10.1148/radiol.2020192665. (PMID: 32573385)
- 14 Bedossa P. Utility and appropriateness of the fatty liver inhibition of progression (FLIP) algorithm and steatosis, activity, and fibrosis (SAF) score in the evaluation of biopsies of nonalcoholic fatty liver disease. Hepatology 2014; 60: 565-575 DOI: 10.1002/hep.2717315. (PMID: 24753132)
- 15 Ravaioli F, Dajti E, Mantovani A. et al. Diagnostic accuracy of FibroScan-AST (FAST) score for the non-invasive identification of patients with fibrotic non-alcoholic steatohepatitis: a systematic review and meta-analysis. Gut 2023; DOI: 10.1136/gutjnl-2022-328689.
- 16 Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 2016; 15: 155-163 DOI: 10.1016/j.jcm.2016.02.012. (PMID: 27330520)
- 17 Maniar RN, Maniar PR, Singhi T. et al. WHO Class of Obesity Influences Functional Recovery Post-TKA. Clin Orthop Surg 2018; 10: 26-32 DOI: 10.4055/cios.2018.10.1.26. (PMID: 29564044)
- 18 Lin S, Huang J, Wang M. et al. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int 2020; 40: 2082-2089 DOI: 10.1111/liv.14548. (PMID: 32478487)
- 19 Rinella ME, Lazarus JV, Ratziu V. et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023; DOI: 10.1016/j.jhep.2023.06.003. (PMID: 37364790)
- 20 Tada T, Kumada T, Toyoda H. et al. Attenuation imaging based on ultrasound technology for assessment of hepatic steatosis: A comparison with magnetic resonance imaging-determined proton density fat fraction. Hepatol Res 2020; 50: 1319-1327 DOI: 10.1111/hepr.13563.
- 21 Sugimoto K, Abe M, Oshiro H. et al. The most appropriate region-of-interest position for attenuation coefficient measurement in the evaluation of liver steatosis. J Med Ultrason (2001) 2021; 48: 615-621 DOI: 10.1007/s10396-021-01124-z.