CC BY 4.0 · SynOpen 2023; 07(04): 521-534
DOI: 10.1055/a-2169-3807
review
Virtual Collection Electrochemical Organic Synthesis

Recent Advances in Electrochemically Mediated Reactions of Diselenides

Lei Zhan
a   Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, P. R. of China
,
Qian Wang
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
,
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
,
Zu-Yu Mo
a   Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Pharmacy School of Guilin Medical University, Guilin 541199, P. R. of China
,
Ying-Ming Pan
b   State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. of China
› Author Affiliations
We thank the Natural Science Foundation of Guangxi Province (2021GXNSFBA075056 and 2022GXNSFBA035489), the Open Project of Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology (2021KF01 and 2022KF05), and the State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), (CMEMR2022-B10) and Middle-aged and Young Teachers’ Basic Ability Promotion Project of Guangxi (2023KY0531) for financial support.


Abstract

Organoselenium compounds are crucial molecules that are utilized extensively in diverse fields such as medicine, agriculture, catalysis, and organic materials. The incorporation of selenium atoms into organic molecules holds significant importance in synthetic chemistry. Organic electrochemical synthesis, a green, mild, and efficient strategy, has displayed remarkable potential for organoselenium chemistry synthesis. Consequently, there has been substantial interest in recent years in researching electrochemically mediated synthesis of organoselenium compounds. This review provides an overview of the progress made in electrochemically mediated organic selenium reactions over the last decade, including electrochemical mediated selenium catalysis, electrochemical oxidation of diselenide coupling, and electrochemical oxidation tandem selenocyclization. The scope, limitations, and mechanisms of those reactions are emphasized.

1 Introduction

2 Electrochemical Selenium-Catalyzed Reactions

3 Electrochemically Mediated Coupling of Aromatic/Heterocyclic Rings with Diselenides

4 Electrochemically Mediated Tandem Selenocyclization

5 Conclusion



Publication History

Received: 14 August 2023

Accepted after revision: 30 August 2023

Accepted Manuscript online:
06 September 2023

Article published online:
24 October 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Khanna PK, Das BK. Mater. Lett. 2004; 58: 1030
    • 1b Nogueira CW, Zeni G, Rocha JB. T. Chem. Rev. 2004; 104: 6255
    • 1c Perin G, Lenardão EJ, Jacob RG, Panatieri RB. Chem. Rev. 2009; 109: 1277
    • 1d Mukjerjee AJ, Zade SS, Singh HB, Sunoj RB. Chem. Rev. 2010; 110: 4357
    • 1e Kumar A, Rao GK, Saleem F, Singh AK. Dalton Trans. 2012; 11949
    • 2a Rayman MP. Lancet 2000; 356: 233
    • 2b Mugesh G, Du Mont WW, Sies H. Chem. Rev. 2001; 101: 2125
    • 2c Bhabak KP, Mugesh G. Acc. Chem. Res. 2010; 43: 1408
    • 2d Ninomiya M, Garud DR, Koketsu M. Coord. Chem. Rev. 2011; 255: 2968
    • 2e Jablonska E, Vinceti M. J. Environ. Sci. Health, Part C: Environ. Carcinog. Ecotoxicol. Rev. 2015; 33: 328
    • 3a Sun K, Wang X, Li C, Wang H, Li L. Org. Chem. Front. 2020; 7: 3100
    • 3b Makhal PN, Nandi A, Kaki VR. ChemistrySelect 2021; 6: 663
    • 4a Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
    • 4b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 4c Zhong P.-F, Lin H.-M, Wang L.-W, Mo Z.-Y, Meng X.-J, Tang H.-T, Pan Y.-M. Green Chem. 2020; 22: 6334
    • 4d Li Q.-Y, Cheng S.-Y, Tang H.-T, Pan Y.-M. Green Chem. 2019; 21: 5517
    • 4e He M.-X, Mo Z.-Y, Wang Z.-Q, Cheng S.-Y, Xie R.-R, Tang H.-T, Pan Y.-M. Org. Lett. 2020; 22: 724
    • 4f Hu X, Zhang G, Nie L, Kong T, Lei A. Nat. Commun. 2019; 10: 5467
    • 4g Li K.-J, Jiang Y.-Y, Xu K, Zeng C.-C, Sun B.-G. Green Chem. 2019; 21: 4412
    • 4h Ma C, Fang P, Mei T.-S. ACS Catal. 2018; 8: 7179
    • 4i Yang Y.-Z, Wu Y.-C, Song R.-J, Li J.-H. Chem. Commun. 2020; 56: 7585
    • 4j Ou C.-H, Pan Y.-M, Tang H.-T. Sci. China: Chem. 2022; 65: 1873
    • 4k Wang X, Wu S, Zhong Y, Wang Y, Pan Y, Tang H. Chin. Chem. Lett. 2023; 34: 107537
    • 4l Pang L.-P, Li X.-Y, Ren S.-C, Lin H.-M, Wang Y.-C, Pan Y.-M, Tang H.-T. Nano Res. 2022; 15: 7091
    • 5a Shao L, Li Y, Lu J, Jiang X. Org. Chem. Front. 2019; 6: 2999
    • 5b Liao L, Zhao X. Chem. Lett. 2021; 50: 1104
    • 5c Cao H, Qian R, Yu L. Catal. Sci. Technol. 2020; 10: 3113
    • 5d Yang L, Liu Y, Fan WX, Tan DH, Li Q, Wang H. Chem. Sci. 2022; 13: 6413
  • 6 Hori T, Sharpless KB. J. Org. Chem. 1979; 44: 4204
    • 7a Wang X, Guo S, Zhang Y, Zhang Z, Zhang G, Ye Y, Sun K. Adv. Synth. Catal. 2021; 363: 3290
    • 7b Wang X, Wang Q, Xue Y, Sun K, Wu L, Zhang B. Chem. Commun. 2020; 56: 4436
    • 7c Toledano-Pinedo M, Martínez del Campo T, Tiemblo M, Fernández I, Almendros P. Org. Lett. 2020; 22: 3979
    • 7d Rode K, Narasimhamurthy PR, Rieger R, Krätzschmar F, Breder A. Eur. J. Org. Chem. 2021; 1720
  • 8 Wang L.-W, Feng Y.-F, Lin H.-M, Tang H.-T, Pan Y.-M. J. Org. Chem. 2021; 86: 16121
  • 9 Li B, Zhou Y, Sun Y, Xiong F, Gu L, Ma W, Mei R. Chem. Commun. 2022; 58: 7566
  • 10 Ding D, Xu L, Wei Y. J. Org. Chem. 2022; 87: 4912
  • 11 Zhang J.-Q, Shen C, Shuai S, Fang L, Hu D, Wang J, Zhou Y, Ni B, Ren H. Org. Lett. 2022; 24: 9419
  • 12 Tan Z, Xiang F, Xu K, Zeng C. Org. Lett. 2022; 24: 5345
  • 13 Zhang X, Wang C, Jiang H, Sun L. Chem. Commun. 2018; 54: 8781
  • 14 Meirinho AG, Pereira VF, Martins GM, Saba S, Rafique J, Braga AL, Mendes SR. Eur. J. Org. Chem. 2019; 6465
  • 15 Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 739
  • 16 Wang Q, Ma X.-L, Chen Y.-Y, Jiang C.-N, Xu Y.-L. Eur. J. Org. Chem. 2020; 4384
  • 17 Sun L, Wang L, Alhumade H, Yi H, Cai H, Lei A. Org. Lett. 2021; 23: 7724
  • 18 Liu X, Wang Y, Song D, Wang Y, Cao H. Chem. Commun. 2020; 56: 15325
  • 19 Chen J, Xiao Y, You X, Li S, Fu Y, Ouyang Y. ChemistrySelect 2023; 8: e202203879
  • 20 Guan Z, Wang Y, Wang H, Huang Y, Wang S, Tang H, Zhang H, Lei A. Green Chem. 2019; 21: 4976
  • 21 Meng X.-J, Zhong P.-F, Wang Y.-M, Wang H.-S, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2020; 362: 506
    • 22a Kostova I. Curr. Med. Chem. 2005; 5: 29
    • 22b Santana L, Uriarte E, Roleira F, Milhazes N, Borges F. Curr. Med. Chem. 2004; 11: 3239
    • 22c Silvan AM, Abad MJ, Bermejo P, Sollhuber M, Villar A. J. Nat. Prod. 1996; 59: 1183
    • 22d Trost BM, Toste FD. J. Am. Chem. Soc. 1996; 118: 6305
  • 23 Hua J, Fang Z, Xu J, Bian M, Liu CK, He W, Zhu N, Yang Z, Guo K. Green Chem. 2019; 21: 4706
  • 24 Hua J, Fang Z, Bian M, Ma T, Yang M, Xu J, Liu CK, He W, Zhu N, Yang Z, Guo K. ChemSusChem 2020; 13: 2053
  • 25 Wang X.-Y, Zhong Y.-F, Mo Z.-Y, Wu S.-H, Xu Y, Tang H.-T, Pan Y.-M. Adv. Synth. Catal. 2021; 363: 208
  • 26 Cheng X, Hasimujiang B, Xu Z, Cai H, Chen G, Mo G, Ruan Z. J. Org. Chem. 2021; 86: 16045
  • 27 Kharma A, Jacob C, Bozzi ÍA. O, Jardim GA. M, Braga AL, Salomão K, Gatto CC, Silva MF. S, Pessoa C, Stangier M, Ackermann L, da Silva Júnior EN. Eur. J. Org. Chem. 2020; 4474
  • 28 Li H, Lu F, Xu J, Hu J, Alhumade H, Lu L, Lei A. Org. Chem. Front. 2022; 9: 2786