Exp Clin Endocrinol Diabetes
DOI: 10.1055/a-2166-6755
German Diabetes Associaton: Clinical Practice Guidelines

Therapy of Type 2 Diabetes

Rüdiger Landgraf
1   German Diabetes Foundation, Düsseldorf, Germany
,
Jens Aberle
2   Division of Endocrinology and Diabetology, University Obesity Centre Hamburg, University Hospital Hamburg-Eppendorf, Germany
,
Andreas L. Birkenfeld
3   German Centre for Diabetes Research (DZD e. V.), Neuherberg, Germany
,
Baptist Gallwitz
4   Department of Internal Medicine IV, Diabetology, Endocrinology, Nephrology, University Hospital Tübingen, Germany
,
Monika Kellerer
5   Department of Internal Medicine I, Marienhospital, Stuttgart, Germany
,
Harald H. Klein
6   MVZ for Diagnostics and Therapy Bochum, Bergstraße 26, 44791 Bochum, Germany
,
Dirk Müller-Wieland
7   Department of Internal Medicine I, Aachen University Hospital RWTH, Aachen, Germany
,
Michael A. Nauck
8   Diabetology, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University, Bochum, Germany
,
Tobias Wiesner
9   MVZ Metabolic Medicine Leipzig, Leipzig, Germany
,
Erhard Siegel
10   Department of Internal Medicine – Gastroenterology, Diabetology/Endocrinology and Nutritional Medicine, St. Josefkrankenhaus Heidelberg GmbH, Heidelberg, Germany
› Author Affiliations

NOTICE OF UPDATE

The DDG clinical practice guidelines are updated regularly during the second half of the calendar year. Please ensure that you read and cite the respective current version.

UPDATES TO CONTENT COMPARED TO THE PREVIOUS YEAR'S VERSION

Part 1 of the clinical practice guideline

Change 1: An additional section on the prevalence and incidence of type 2 diabetes in Germany has been added.
Reason: These current figures highlight the medical, psychosocial and health policy significance of this complex disease.


Change 2: On the basis of current data, the various risk factors and their structured assessment (including the increasing importance of fatty liver) for the development of cardiovascular and renal complications are again highlighted.
Reason: For an individual therapy decision, the in-depth risk assessment is very helpful Supporting reference: [6] [7]


Change 3: The short diagnostics section has been brought forward
Reason: More logical order of sections


Change 4: The section on plasma glucose self-measurement was supplemented to include the possibilities and possible necessity of using CGM in people with type 2 diabetes
Reason: The treatment of people with type 2 diabetes is becoming more individual and therefore more complex. Temporary information about TiR and TuR can at minimum be helpful in the treatment decision.


Change 5: In the section on nutritional therapy, current literature citations were introduced and new evidence on the benefits of moderate coffee consumption in many chronic diseases, including type 2 diabetes, was mentioned. Hypocaloric nutrition, intermittent fasting, etc. play an important role
Reason: Evidence from the cited literature


Change 6: A section on fatty liver disease and its treatment options has been added.
Reason: Fatty liver disease as an important risk disease for chronic liver disease and as a risk factor for cardiovascular and renal complications in people with type 2 diabetes still plays a subordinate role in screening. The regular determination of the FIB-4 index is simple and prognostically significant.
Supporting references: Updated S2K Guideline Non-Alcoholic Fatty Liver Disease; Diabetes and Fatty Liver section in this supplement Part 2 of the clinical practice guideline


Change 7: In contrast to the ESC guideline (avoidance of metformin), the DDG, the National Treatment Guideline on type 2 diabetes as well as the ADA/EASD consensus recommendations, the section on metformin emphasizes that SGLT-2 inhibitors and/or GLP-1RAs (usually with metformin) should be used in high-risk patients and in people with already manifest cardiovascular (including heart failure) and renal diseases.
Reason: RCTs and their meta-analyses


Change 8: In new analyses of RCTs, sulfonylureas (SHs) were associated with a significantly higher rate of severe hypoglycaemia and cardiovascular events, including all-cause mortality. On the other hand, a large Scottish cohort study showed that no higher rates of cardiovascular events, including mortality, were observed for sulfonylureas as the 2nd antidiabetic agent after metformin compared to DPP4 inhibitors or pioglitazone. From this, the authors concluded that SHs continue to be recommended as second-line medications, especially in health systems that cannot afford more expensive antidiabetic drugs.
Supporting reference: [67]


Change 9: A recent meta-analysis of 82 studies showed that DPP4 inhibitors were significantly associated with a higher risk (22%) of gallbladder and biliary tract disease.
Supporting reference: [104]


Change 10: In the SGLT inhibitors section, the new [Tab. 4] on the approval and (contra)indications of dapagliflozin, empagliflozin and ertugliflozin for type 2 diabetes, nephropathy and heart failure (HF pEF, HFmEF, HFrEF).
Reason: New approvals and indications
Supporting references: Current instructions for use


Change 11: A large number of new clinical studies and their meta-analyses on the use of SGLT-2 inhibitors approved in Germany and their effects on cardiovascular and renal endpoints are discussed.
Reason: An update was necessary


Change 12: Section on the effect of SGLT-2 inhibitors on the liver
Reason: An update was necessary


Change 13: Updates in the GLP-1 receptor agonists section as a whole and in the discussion of the individual substances. In most cases, the newer data were added at the end of the discussion of the respective active ingredient.
Reason: An update was necessary.


Change 14: [Tab. 6] in Part 2 (Additional informations) on cardiovascular and renal benefits (absolute risk reduction and hazard ratios) of SGLT-2 inhibitors and GLP-1 RAs based on a recent meta-analysis
Supporting reference : [318


Change 15: The Basal insulins section describes a head-tohead comparison of injectable incretin-based drugs IBGLMs (short- and long-acting GLP-1 RAs and tirzepatide) vs. basal insulin therapy (NPH, glargine, detemir, degludec). In all studies (n = 20) with a total of 11843 patients, there was a reduction in HbA1c of 0.48% (0.45–0.52) more with IBGLMs than with basal insulins. This effect was particularly evident with the long-acting GLP-1 RAs and tirzepatide (pooled doses: ΔHbA1c –0.90% [−1.06; −0.75]). Short-acting GLP-1 RAs were comparably effective compared to basal insulin (p = 0.90). All IBGLM subgroups resulted significantly in lower body weight (−4.6 [−4.7; −4.4] kg), in particular tirzepatide (−12.0 [−13.8–10] kg). Based on the analyses, the authors again underline that in the event of therapy escalation to injectable drugs, IBGLMs should be considered first instead of basal insulins.
Supporting reference: [353]
Change 16: icodec insulin is described
Reason: Current data

The Clinical Practice Guidelines of the German Diabetes Society/Deutsche Diabetes Gesellschaft (DDG) are based on the contents of the National Healthcare Guideline (Nationale VersorgungsLeitlinie (NVL)) “Type 2 Diabetes” [1]. The modifications in therapy and their justifications made in the present Clinical Practice Guidelines were largely updated on the basis of new randomized controlled trials (RCTs) and meta-analyses.

In order to improve the work with the extensive clinical practice guideline in daily practice, the authors have decided to move the individual glucose-lowering pharmaceuticals and some algorithms in the current clinical practice guideline to a detailed appendix. The corresponding list of references can also be found in the appendix.



Publication History

Article published online:
10 April 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Nationale VersorgungsLeitlinien. NVL-2-Diabetes – Teilpublikation, 3. Aufl. Mai 2023. Available from: www.leitlinien.de/themen/diabetes
  • 2 Heidemann C, Christa Scheidt-Nave C. Prävalenz, Inzidenz und Mortalität von Diabetes mellitus bei Erwachsenen in Deutschland – Bestandsaufnahme zur Diabetes-Surveillance. Journal of Health Monitoring 2017; 2 DOI: 10.17886/RKI-GBE-2017-050.
  • 3 Schmidt C, Reitzle L, Dreß J. et al. Prävalenz und Inzidenz des dokumentierten Diabetes mellitus – Referenzauswertung für die Diabetes-Surveillance auf Basis von Daten aller gesetzlich Krankenversicherten. Bundesgesundheitsbl 2020; 63: 93-102
  • 4 Tönnies T, Rathmann W. Epidemiologie des Diabetes in Deutschland. In: Deutsche Diabetes Gesellschaft, diabetesDE – Deutsche Diabetes-Hilfe, Hrsg. Deutscher Gesundheitsbericht Diabetes 2022. Mainz: Verlag Kirchheim; 2021: 9-15
  • 5 Tönnies T, Hoyer A, Brinks R. et al. Spatio-temporal trends in the incidence of type 2 diabetes in Germany—analysis of the claims data of 63 million persons with statutory health insurance from 2014 to 2019. Dtsch Arztebl Int 2023; 120: 173-179
  • 6 Tönnies T, Hoyer A, Brinks R. et al. Spatio-temporal trends in the incidence of type 2 diabetes in Germany—analysis of the claims data of 63 million persons with statutory health insurance from 2014 to 2019. Dtsch Arztebl Int 2023; 120: 173-179
  • 7 Rosengren A, Dikaiou P. Cardiovascular outcomes in type 1 and type 2 diabetes. Diabetologia 2023; 66: 425-437
  • 8 Dziopa K, Asselbergs FW, Gratton J. et al. Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings. Diabetologia 2022; 65: 644-656
  • 9 Alberti KGMM, Eckel RH, Grundy SM. et al. Harmonizing the Metabolic Syndrome. Circulation 2009; 120: 1640-1645
  • 10 Heinemann L, Kaiser P, Freckmann G. et al. HbA1c-Messung in Deutschland: Ist die Qualität ausreichend für Verlaufskontrolle und Diagnose?. Diabetologie 2018; 13: 46-53
  • 11 Landgraf R, Nauck M, Freckmann G. et al. Fallstricke bei der Diabetesdiagnostik: Wird zu lax mit Laborwerten umgegangen?. Dtsch Med Wochenschr 2018; 143: 1549-1555
  • 12 Pleus S, Tytko A, Landgraf R. et al. Definition, Klassifikation, Diagnostik und Differenzialdiagnostik des Diabetes mellitus: Update 2023. Diabetol Stoffwechs 2023; 18: S100-S113
  • 13 Landgraf R. HbA1c in der Diabetesdiagnostik. Der Goldstandard?. Diabetes aktuell 2021; 19: 22-29
  • 14 Ahlqvist E, Storm P, Käräjämäki A. et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018; 6: 361-369
  • 15 Zaharia OP, Strassburger K, Strom A. German Diabetes Study Group et al. Risk of diabetes-associated diseases in subgroups of patients with recentonset diabetes: a 5-year follow-up study. Lancet Diabetes Endocrinol 2019; 7: 684-694
  • 16 Dennis JM, Shields BM, Henley WE. et al. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol 2019; 7: 442-451
  • 17 Elwyn G, Vermunt NPCA. Goal-based shared decision-making: developing an integrated model. J Patient Exp 2020; 7: 688-696
  • 18 Wang R, Song Y, Yan Y. et al. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis 2016; 254: 193-199
  • 19 Mach F, Baigent C, Catapano AL. et al. for the ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-188
  • 20 Parhofer KG, Birkenfeld AL, Krone W. et al. Lipidtherapie bei Patienten mit Diabetes mellitus. Diabetol Stoffwechs 2023; 18: S330-S336
  • 21 Jordan J, Kurschat C, Reuter H. Arterielle Hypertonie. Diagnostik und Therapie. Dtsch Arztebl Int 2018; 115: 557-568
  • 22 Whelton PK, Carey RM, Aronow WS. et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: Executive Summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018; 71: 2199-2269
  • 23 Williams B, Mancia G, Spiering W. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 36: 3021-3104
  • 24 Nationale Versorgungs-Leitlinien. Hypertonie. Version 1.0, AWMF-Register-Nr. nvl-009. Available from: https://www.leitlinien.de/themen/hypertonie
  • 25 Han H, Cao Y, Feng C. et al. Association of a Healthy Lifestyle With All-Cause and Cause-Specific Mortality Among Individuals With Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care 2022; 45: 319-329
  • 26 Zhang Y, Pan XF, Chen J. et al. Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. Diabetologia 2020; 63: 21-3316
  • 27 Kivimäki M, Bartolomucci A, Kawachi I. The multiple roles of life stress in metabolic disorders. Nat Rev Endocrinol 2023; 19: 10-27
  • 28 Lloyd-Jones DM, Allen NB, Anderson CAM. et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022; 146: e18-e43
  • 29 Nationale VersorgungsLeitlinie (NVL) Diabetes – Strukturierte Schulungsprogramme 2018. Available from: www.leitlinien.de/nvl/diabetes/schulungsprogramme
  • 30 Hermanns N, Ehrmann D, Shapira A. et al. Coordination of glucose monitoring, self-care behaviour and mental health: achieving precision monitoring in diabetes. Diabetologia 2022; 65: 1883-1894
  • 31 Sherr JL, Heinemann L, Fleming A. et al. Automated insulin delivery: benefits, challenges, and recommendations. A Consensus Report of the Joint Diabetes Technology Working Group of the European Association for the Study of Diabetes and the American Diabetes Association. Diabetologia 2023; 66: 3-22
  • 32 Oliver N, Chow E, Luk AOY. et al. Applications of continuous glucose monitoring across settings and populations: Report from the 23rd Hong Kong diabetes and cardiovascular risk factors—East meets west symposium. Diab Med 2023; 40: e15038
  • 33 Daly A, Howorka R. Technology in the management of type 2 diabetes – present status and future prospects. Diabetes Obes Metab 2021; 23: 1722-1732
  • 34 Di Molfetta S, Caruso I, Cignarelli A. et al. Professional continuous glucose monitoring in patients with diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes Metab 2023; 25: 1301-1310
  • 35 Forouhi NG, Misra A, Mohan V. et al. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ 2018; 361: k2234
  • 36 Serra-Majem L, Román-Viñas B, Sanchez-Villegas A. et al. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol Aspects Med 2019; 67: 1-55
  • 37 Taylor R, Al-Mrabeh A, Sattar N. Understanding the mechanisms of reversal of type 2 diabetes. Lancet Diabetes Endocrinol 2019; 7: 726-736
  • 38 Evert AB, Dennison M, Gardner CD. et al. Nutrition therapy for adults with Diabetes or prediabetes: a consensus report. Diabetes Care 2019; 42: 731-754
  • 39 Hauner H. Evidenz in der Ernährungstherapie des Diabetes mellitus. Diabetologe 2021; 17: 687-696
  • 40 Tombeck A. Rolle der Ballaststoffe in der Ernährung von Menschen mit Typ-2-Diabetes. Info Diabetologie 2023; 17: 31-36
  • 41 Carlström M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev 2018; 76: 395-417
  • 42 Di Maso M, Boffetta P, Negri E. et al. Caffeinated Coffee Consumption and Health Outcomes in the US Population: A Dose-Response Meta-Analysis and Estimation of Disease Cases and Deaths Avoided. Adv Nutr 2021; 12: 1160-1176
  • 43 Larsson SC, Woolf B, Gill D. Appraisal of the causal effect of plasma caffeine on adiposity, type 2 diabetes, and cardiovascular disease: two sample mendelian randomisation study. BMJ Med 2023; 2: e000335
  • 44 Chester B, Babu JR, Greene MW. et al. The effects of popular diets on type 2 diabetes management. Diabetes Metab Res Rev 2019; 35: e3188
  • 45 Naude CE, Brand A, Schoonees A. et al. Low-carbohydrate versus balanced carbohydrate diets for reducing weight and cardiovascular risk (Review). Cochrane Database Syst Rev 2022; 1: CD013334
  • 46 Patikorn C, Roubal K, Sajesh KV. et al. Intermittent Fasting and Obesity-Related Health Outcomes. An Umbrella Review of Meta-analyses of Randomized Clinical Trials. JAMA Netw Open 2021; 4: e2139558
  • 47 Uldal S, Clemmensen KKB, Persson F. et al. Is Time-Restricted Eating Safe in the Treatment of Type 2 Diabetes? A Review of Intervention Studies. Nutrients 2022; 14: 2299
  • 48 Shan Z, Wang F, Li Y. et al. Healthy Eating Patterns and Risk of Total and Cause-Specific Mortality. JAMA Intern Med 2023; 183: 142-153
  • 49 Churuangsuk C, Hall J, Reynolds A. et al. Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022; 65: 14-36
  • 50 The Diabetes and Nutrition Study Group (DNSG) of the European Association for the Study of Diabetes (EASD). Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023; 66: 965-985
  • 51 Salas-Salvadó J, Díaz-López A, Ruiz-Canela M. et al. Effect of a Lifestyle Intervention Program With Energy-Restricted Mediterranean Diet and Exercise on Weight Loss and Cardiovascular Risk Factors: One-Year Results of the PREDIMED-Plus Trial. Diabetes Care 2019; 42: 777-788
  • 52 Thackrey E, Chen J, Martino CR. et al. The effects of diet on weight and metabolic outcomes in patients with double diabetes: A systematic review. Nutrition 2022; 94: 111536
  • 53 Kempf K, Altpeter B, Berger J. et al. Efficacy of the telemedical lifestyle intervention program TeLiPro in advanced stages of type 2 diabetes: A randomized controlled trial. Diabetes Care 2017; 40: 863-871
  • 54 Lean MEJ, Leslie WS, Barnes AC. et al. Durability of a primary care-led weightmanagement intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomized trial. Lancet Diabetes Endocrinol 2019; 7: 344-355
  • 55 Adipositas – Prävention und Therapie. AWMF-Register Nr. 050-001.
  • 56 Cassidy S, Trenell M, Stefanetti RJ. et al. Physical activity, inactivity and sleep during the Diabetes Remission Clinical Trial (DiRECT). Diab Med 2023; 40: e15010
  • 57 Aberle J, Lautenbach A, Meyhöfer S. et al. Adipositas und Diabetes. Diabetol Stoffwechs 2023; 18: S305-S313
  • 58 Yang D, Yang Y, Li Y. et al. Physical exercise as therapy for type 2 diabetes mellitus: from mechanism to orientation. Ann Nutr Metab 2019; 74: 313-321
  • 59 Tarp J, Støle AP, Blond K. et al. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: a systematic review and metaanalysis. Diabetologia 2019; 62: 1129-1142
  • 60 Liu Y, Ye W, Chen Q. et al. Resistance exercise intensity is correlated with attenuation of HbA1c and insulin in patients with type 2 diabetes: A systematic review and meta-analysis. Int J Environ Res Public Health 2019; 16: 140
  • 61 Kanaley JA, Colberg SR, Corcoran MH. et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2022; 54: 353-368
  • 62 Esefeld K, Kress S, Behrens M. et al. Diabetes, Sport und Bewegung. Diabetol Stoffwechs 2021; 16: S299-S307
  • 63 Jabardo-Camprubí G, Donat-Roca R, Sitjà-Rabert M. et al. Drop-out ratio between moderate to high-intensity physical exercise treatment by patients with, or at risk of, type 2 diabetes mellitus: A systematic review and meta-analysis. Physiol Behav 2020; 215: 112786
  • 64 Villafranca Cartagena M, Tort-Nasarre G, Rubinat Arnaldo E. Barriers and Facilitators for Physical Activity in Adults with Type 2 Diabetes Mellitus: A Scoping Review. Int J Environ Res Public Health 2021; 18: 5359
  • 65 MacDonald CS, Ried-Larsen M, Soleimani J. et al. A systematic review of adherence to physical activity interventions in individuals with type 2 diabetes. Diabetes Metab Res Rev 2021; 37: e3444
  • 66 Thomsen S, Kristensen GDW, Jensen NWH. et al. Maintaining changes in physical activity among type 2 diabetics – A systematic review of rehabilitation interventions. Scand J Med Sci Sports 2021; 31: 1582-1591
  • 67 Pan A, Wang Y, Talaei M. et al. Relation of active, passive, and quitting smoking with incident diabetes: a meta-analysis and systematic review. Lancet Diabetes Endocrinol 2015; 3: 958-996
  • 68 Kar D, Gillies C, Nath M. et al. Association of smoking and cardiometabolic parameters with albuminuria in people with type 2 diabetes mellitus: a systematic review and meta-analysis. Acta Diabetol 2019; 56: 839-850
  • 69 Rauchen und Tabakabhängigkeit: Screening, Diagnostik und Behandlung. S3-Leitlinie Langversion AWMF-Register Nr. 076-006.
  • 70 Tabakatlas Deutschland 2020. Available from: www.dkfz.de/de/tabakkontrolle/download/Publikationen/sonstVeroeffentlichungen/Tabakatlas-Deutschland-2020_dp.pdf
  • 71 Concato J, Corrigan-Curay J. Real-World Evidence – Where Are We Now?. N Engl J Med 2022; 386: 1680-1682
  • 72 Fleming GA, Petrie JR, Bergenstal RM. et al. Diabetes Digital App Technology: Benefits, Challenges, and Recommendations. A Consensus Report by the European Association for the Study of Diabetes (EASD) and the American Diabetes Association (ADA) Diabetes Technology Working Group. Diabetes Care 2020; 43: 250-260
  • 73 Khunti K, Gomes MB, Pocock S. et al. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes Metab 2018; 20: 427-437
  • 74 Matthews DR, Paldánius PM, Proot P. VERIFY study group et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomized, double-blind trial. Lancet 2019; 394: 1519-1529
  • 75 Meier JJ. Efficacy of Semaglutide in a Subcutaneous and an Oral Formulation. Front Endocrinol 2021; 12: 645617
  • 76 Gallwitz B, Giorgino F. Clinical Perspectives on the Use of Subcutaneous and Oral Formulations of Semaglutide. Front Endocrinol 2021; 12: 645507
  • 77 Zaazouee MS, Hamdallah A, Helmy SK. et al. Semaglutide for the treatment of type 2 Diabetes Mellitus: A systematic review and network meta-analysis of safety and efficacy outcomes. Diabetes Metab Syndr 2022; 16: 102511
  • 78 Alhindi Y, Avery A. The efficacy and safety of oral semaglutide for glycaemic management in adults with type 2 diabetes compared to subcutaneous semaglutide, placebo, and other GLP-1 RA comparators: A systematic review and network meta-analysis. Contemp Clin Trials Commun 2022; 28: 100944
  • 79 Gough SC, Bode B, Woo V. et al. Efficacy and safety of a fixed-ratio combination of insulin degludec and liraglutide (IDegLira) compared with its components given alone: results of a phase 3, open-label, randomised, 26-week, treat-to-target trial in insulin-naive patients with type 2 diabetes. Lancet Diabet Endocrinol 2014; 2: 885-893
  • 80 Diamant M, Nauck MA, Shaginian R. et al. Glucagon-like peptide 1 receptor agonist or bolus insulin with optimized basal insulin in type 2 diabetes. Diabetes Care 2014; 37: 2763-2773
  • 81 Montvida O, Klein K, Kumar S. et al. Addition of or switch to insulin therapy in people treated with glucagon-like peptide-1 receptor agonists: A realworld study in 66583 patients. Diabetes Obes Metab 2017; 19: 108-117
  • 82 Gomez-Peralta F, Al-Ozairi E, Jude EB. et al. Titratable fixed-ratio combination of basal insulin plus a glucagon-like peptide-1 receptor agonist: A novel, simplified alternative to premix insulin for type 2 diabetes. Diabetes Obes Metab 2021; 23: 1445-1452
  • 83 Edelman S, Cassarino D, Kayne D. et al. Treatment persistence and adherence in people with type 2 diabetes switching to iGlarLixi vs free-dose combinations of basal insulin and glucagon-like peptide 1 receptor agonist. J Manag Care Spec Pharm 2022; 28: 958-968
  • 84 Champlain JM. Practical Considerations for Use of Insulin/Glucagon-Like Peptide 1 Receptor Agonist Combinations in Older Adults With Type 2 Diabetes. J Fam Pract 2022; 71: S34-S39
  • 85 Mehta R, Billings LK, Liebl A. et al. Transitioning from basal-bolus or premix insulin therapy to a combination of basal insulin and glucagon-like peptide-1 receptor agonist in people with type 2 diabetes. Diabet Med 2022; 39: e14901
  • 86 Risovic I, Dumanovic MS, Bojic M. et al. Direct comparison two fixed-ratio combination glucagon-like peptide receptor agonist and basal insulin on glycemic and non glycemic parameters in type 2 diabetes. BMC Endocr Disord 2023; 23: 28
  • 87 Home PD, McCrimmon RJ, Rosenstock J. et al. SoliMix trial investigators. Findings for iGlarLixi versus BIAsp 30 confirmed in groups of people with type 2 diabetes with different biomedical characteristics. Diabetes Obes Metab 2023; 25: 656-663
  • 88 Visolyi GÁ, Domján BA, Svébis MM. et al. Comparison of Efficacy and Safety of Commercially Available Fixed-Ratio Combinations of Insulin Degludec/Liraglutide and Insulin Glargine/Lixisenatide: A Network Metaanalysis. Can J Diabetes 2023; 47: 368-377
  • 89 Daly AB, Boughton CK, Nwokolo M. et al. Fully automated closed-loop insulin delivery in adults with type 2 diabetes: an open-label, singlecenter, randomized crossover trial. Nat Med 2023; 29: 203-208
  • 90 Karol AB, OʼMalley G, Fallurin R. et al. Automated Insulin Delivery Systems as a Treatment for Type 2 Diabetes Mellitus: A Review. Endocr Pract 2023; 29: 214-220
  • 91 Davis GM, Peters AL, Bode BW. et al. Safety and Efficacy of the Omnipod 5 Automated Insulin Delivery System in Adults With Type 2 Diabetes: From Injections to Hybrid Closed-Loop Therapy. Diabetes Care 2023; 46: 742-750
  • 92 Averna M, Catapano AL. One year after the ESC/EAS guidelines on cholesterol control. Whatʼs the new evidence? Whatʼs missing?. Eur J Intern Med 2022; 95: 1-4
  • 93 Mengden T, Weisser B. Therapieüberwachung bei arterieller Hypertonie. Dtsch Ärztebl 2021; 118: 473-478
  • 94 Banegas JR, Ruilope LM, de la Sierra A. et al. Relationship between clinic and ambulatory blood-pressure measurements and mortality. N Engl J Med 2018; 378: 1509-1520
  • 95 ESC/ESH Guidelines 2018. Management der arteriellen Hypertonie. Available from: www.dgk.de
  • 96 American Diabetes Association. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes – 2021. Diabetes Care 2021; 44: S125-S150
  • 97 The SPRINT Research Group. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med 2015; 373: 2103-2116
  • 98 The SPRINT Research Group. Final Report of a Trial of Intensive versus Standard Blood-Pressure Control. N Engl J Med 2021; 384: 1921-1930
  • 99 Busch M, Wanner C, Wolf G. KDIGO-Leitlinie zur Behandlung des Diabetes mellitus bei chronischer Nierenerkrankung – Update 2022. Nephrologie 2023; 18: 160-170
  • 100 ElSayed NA, Aleppo G, Aroda VR. et al. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes – 2023. Diabetes Care 2023; 46: S191-S202
  • 101 Merker L, Bautsch BW, Ebert T. et al. Nephropathie bei Diabetes. Diabetol Stoffwechs 2023; 18: S342-S347
  • 102 The Nuffield Department of Population Health Renal Studies Group* and the SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022; 400: 1788-1801
  • 103 Neuen BL, Young T, Heerspink HJL. et al. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7: 845-854
  • 104 Giugliano D, Longo M, Signoriello S. et al. The effect of DPP-4 inhibitors, GLP-1 receptor agonists and SGLT-2 inhibitors on cardiorenal outcomes: a network meta-analysis of 23 CVOTs. Cardiovasc Diabetol 2022; 21: 42
  • 105 Mannucci E, Gallo M, Giaccari A. et al. Effects of glucose-lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: An updated meta-analysis of randomized controlled trials with external adjudication of events. Diabetes Obes Metab 2023; 25: 444-453
  • 106 Zhang Y, Jiang L, Wang J. et al. Network meta-analysis on the effects of finerenone versus SGLT2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in patients with type 2 diabetes mellitus and chronic kidney disease. Cardiovasc Diabetol 2022; 21: 232
  • 107 Singh AK, Singh A, Singh R. et al. Finerenone in diabetic kidney disease: A systematic review and critical appraisal. Diabetes Metab Syndr 2022; 16: 102638
  • 108 Shi Q, Nong K, Vandvik PO. et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2023; 381: e074068
  • 109 Stefan N, Roden M. Diabetes und Fettleber. Diabetol Stoffwechs 2023; 18: S324-S329
  • 110 Roeb E, Canbay A, Bantel H. et al. Aktualisierte S2k-Leitlinie Nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) April 2022 – AWMF-Registernummer. 021-025
  • 1 Lawall H, Huppert P, Rümenapf G. et al. Periphere arterielle Verschlusskrankheit (PAVK), Diagnostik, Therapie und Nachsorge. AWMF-Register Nr 2015; 065-003 (valid until 29.11.2020, in revision)
  • 2 Ziegler D, Tesfaye S, Spallone V. et al. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res Clin Pract 2022; 186: 109063
  • 3 Nationale VersorgungsLeitlinie Prävention und Therapie von Netzhautkomplikationen bei Diabetes 2016. Available from: www.leitlinien.de/nvl/html/netz.hautkomplikationen (Validity expired)
  • 4 Nationale VersorgungsLeitlinie (NVL) Typ-2-Diabetes Präventions- und Behandlungsstrategien für Fußkomplikationen 2018. Available from: www.leitlinien.de/nvl/diabetes/fusskomplikationen (in revision, validity expired)
  • 5 Roeb E, Steffen HM, Bantel H. et al. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) April 2022 – AWMF-Registernummer: 021-025
  • 6 Gill D, Cameron AC, Burgess S. et al. Urate, Blood Pressure, and Cardiovascular Disease. Evidence From Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension 2021; 77: 383-392
  • 7 Nationale VersorgungsLeitlinie Chronische Herzinsuffizienz, 3. Auflage. Available from: www.leitlinien.de/themen/herzinsuffizienz
  • 8 Nationale VersorgungsLeitlinie Chronische Koronare Herzerkrankung, Version 6. Available from: www.leitlinien.de/themen/khk
  • 9 El Sayed NA, Aleppo G, Aroda VR. on behalf of the American Diabetes Association Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes — 2023. Diabetes Care. 2023; 46: S191-S202
  • 10 Nationale VersorgungsLeitlinien. NVL-2-Diabetes – Teilpublikation, 3. Aufl. Mai 2023. Available from www.leitlinien.de/themen/diabetes
  • 11 The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N Engl J Med 2013; 369: 145-154
  • 12 Unick JL, Gaussoin SA, Hill JO. et al. Objectively assessed physical activity and weight loss maintenance among individuals enrolled in a lifestyle intervention. Obesity (Silver Spring) 2017; 25: 1903-1909
  • 13 The Look AHEAD Research Group. Association of the magnitude of weight loss and changes in physical fitness with longterm cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomized clinical trial. Lancet Diabetes Endocrinol 2016; 4: 913-921
  • 14 Gregg EW, Lin J, Bardenheier B. et al. Impact of Intensive Lifestyle Intervention on Disability-Free Life Expectancy: The Look AHEAD Study. Diabetes Care 2018; 41: 1040-1048
  • 15 Chao AM, Wadden TA, Berkowitz RI. Look AHEAD Research Group et al. Weight change 2 years after termination of the intensive lifestyle intervention in the Look AHEAD Study. Obesity 2020; 28: 893-890
  • 16 Yang D, Yang Y, Li Y. et al. Physical exercise as therapy for type 2 diabetes mellitus: from mechanism to orientation. Ann Nutr Metab 2019; 74: 313-321
  • 17 Tarp J, Støle AP, Blond K. et al. Cardiorespiratory fitness, muscular strength and risk of type 2 diabetes: a systematic review and meta-analysis. Diabetologia 2019; 62: 1129-1142
  • 18 Rijal A, Nielsen EE, Adhikari TB. et al. Effects of adding exercise to usual care in patients with either hypertension, type 2 diabetes or cardiovascular disease: a systematic review with meta-analysis and trial sequential analysis. Br J Sports Med 2023; 57: 930-939
  • 19 Thomsen S, Westergaard Kristensen GD, Weigelt N. et al. Maintaining changes in physical activity among type 2 diabetics – A systematic review of rehabilitation interventions. Scand J Med Sci Sports 2021; 31: 1582-1591
  • 20 Jansson AK, Chan LX, Lubans DR. et al. Effect of resistance training on HbA1c in adults with type 2 diabetes mellitus and the moderating effect of changes in muscular strength: a systematic review and meta-analysis. BMJ Open Diab Res Care 2022; 10: e002
  • 21 Kanaley JA, Colberg SR, Corcoran MH. et al. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med Sci Sports Exerc 2022; 54: 353-368
  • 22 Balducci S, Haxhi J, Sacchetti M. et al. Relationships of Changes in Physical Activity and Sedentary Behavior With Changes in Physical Fitness and Cardiometabolic Risk Profile in Individuals With Type 2 Diabetes: The Italian Diabetes and Exercise Study 2 (IDES_2). Diabetes Care 2022; 45: 213-221
  • 23 Lazarus B, Wu A, Shin JI. et al. Association of metformin use with risk of lactic acidosis across the range of kidney function. A community-based cohort study. JAMA Intern Med 2018; 178: 903-910
  • 24 Griffin SJ, Leaver JK, Irving GJ. et al. Impact of metformin on cardiovascular disease: a meta-analysis of randomized trails among people with type 2 diabetes. Diabetologia 2017; 60: 1620-1629
  • 25 Palmer SC, Mavridis D, Nicolucci A. et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes. A meta-analysis. JAMA 2016; 316: 313-324
  • 26 Madsen KS, Kähler P, Kähler LKA. et al. Metformin and secondor third generation sulphonylurea combination therapy for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev 2019; 4: CD012
  • 27 Sattar N, McGuire DK. Prevention of CV outcomes in antihyperglycemic drug-naive patients with type 2 diabetes with, or at elevated risk of, ASCVD: to start or not to start with metformin. Eur Heart J 2021; 42: 2574-2576
  • 28 Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism. 2022; 130: 155160
  • 29 Gonzalez-Gonzalez JG, Solis RC, Gonzalez-Colmenero AD. et al. Effect of metformin on microvascular outcomes in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2022; 186: 109821
  • 30 Lee CG, Heckman-Stoddard B, Dabelea D. et al. Effect of Metformin and Lifestyle Interventions on Mortality in the Diabetes Prevention Program and Diabetes Prevention Program Outcomes Study. Diabetes Care 2021; 44: 2775-2782
  • 31 Tan J, Wang Y, Liu S. et al. Long-Acting Metformin Vs. Metformin Immediate Release in Patients With Type 2 Diabetes: A Systematic Review. Front Pharmacol 2021; 12: 669814
  • 32 Mallik R, Chowdhury TA. Metformin in cancer. Diabetes Res Clin Pract 2018; 143: 409-419
  • 33 Thakur S, Daley B, Klubo-Gwiezdzinska J. The role of the antidiabetic drug metformin in the treatment of endocrine tumors. J Mol Endocrinol 2019; 63: R17-R35
  • 34 De A, Kuppusamy G. Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2020; 44: 100488
  • 35 Rahmani J, Manzari N, Thompson J. et al. The effect of metformin on biomarkers associated with breast cancer outcomes: a systematic review, meta-analysis, and dose-response of randomized clinical trials. Clin Transl Oncol 2020; 22: 37-49
  • 36 Fong W, To KKW. Drug repurposing to overcome resistance to various therapies for colorectal cancer. Cell Mol Life Sci 2020; 76: 3383-3406
  • 37 Aljofan M, Riethmacher D. Anticancer activity of metformin: a systematic review of the literature. Future Sci OA 2019; 5: FSO410
  • 38 Feng Z, Zhou X, Liu N. et al. Metformin use and prostate cancer risk: A meta-analysis of cohort studies. Medicine (Baltimore) 2019; 98: e14955
  • 39 Lv Z, Guo Y. Metformin and Its Benefits for Various Diseases. Front Endocrinol 2020; 11: 191
  • 40 Prodromidou A, Lekka S, Fotiou A. et al. The evolving role of targeted metformin administration for the prevention and treatment of endometrial cancer: A systematic review and meta-analysis of randomized controlled trials. J Gynecol Obstet. Hum Reprod 2021; 50: 102164
  • 41 Triggle CR, Mohammed I, Bshesh K. et al. Metformin: Is it a drug for all reasons and diseases?. Metabolism 2022; 133: 155223
  • 42 Wang Q, Shi M. Effect of metformin use on the risk and prognosis of colorectal cancer in diabetes mellitus: a meta-analysis. Anticancer Drugs 2022; 33: 191-199
  • 43 Matarese G. The link between obesity and autoimmunity Overnutrition could lead to loss of self-tolerance by impinging on immune regulation. Science 2023; 379: 1298-1300
  • 44 Wensink MJ, Lu Y, Tian L. Preconception Antidiabetic Drugs in Men and Birth Defects in Offspring. A Nationwide Cohort Study. Ann Intern Med 2022; 175: 665-673
  • 45 Khunti K, Knighton P, Zaccardi F. et al. Prescription of glucose lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol 2021; 9: 293-303
  • 46 Steenblock C, Schwarz PEH, Ludwig B. et al. COVID-19 and metabolic disease: mechanisms and clinical Management. Lancet Diabetes Endocrinol 2021; 9: 786-98
  • 47 Bornstein SR, Rubino F, Khunti K. et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8: 546-550
  • 48 Wargny M, Potier L, Gourdy P. et al. Predictors of hospital discharge and mortality in patients with diabetes and COVID-19: updated results from the nationwide CORONADO study. Diabetologia 2021; 64: 778-794
  • 49 Kow CS, Hasan SS. Mortality risk with preadmission metformin use in patients with COVID-19 and diabetes: A meta-analysis. J Med Virol 2021; 93: 695-697
  • 50 Lim S, Bae JH, Kwon H-S, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17: 11-30
  • 51 Oshima M, Jun M, Ohkuma T. et al. The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes: the ADVANCE-ON study. Diabetologia 2019; 62: 1988-1997
  • 52 The ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358: 2560-2572
  • 53 Rosenstock J, Kahn SE, Johansen OE. on behalf of the CAROLINA Investigators et al. Effect of linagliptin vs. glimepiride on major adverse cardiovascular outcomes in patients with type 2 diabetes: The CAROLINA randomized clinical trial. JAMA 2019; 322: 1155-1116
  • 54 Rados DV, Pinto LC, Remonti LR. et al. The Association between Sulfonylurea Use and All-Cause and Cardiovascular Mortality: A Meta-Analysis with Trial Sequential Analysis of Randomized Clinical Trials. PLoS Med 2016; 13: e1001992
  • 55 Azoulay L, Suissa S. Sulfonylureas and the risks of cardiovascular events and death: A methodological meta-regression analysis of the observational studies. Diabetes Care 2017; 40: 706-714
  • 56 Bain S, Druyts E, Balijepalli C. et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19: 329-335
  • 57 Zhuang XD, He X, Yang DY. et al. Comparative cardiovascular outcomes in the era of novel anti-diabetic agents: a comprehensive network meta-analysis of 166 371 participants from170 randomized controlled trials. Cardiovasc Diabetol 2018; 17: 79
  • 58 Powell WR, Christiansen CL, Miller DR. Meta-analysis of sulfonylurea therapy on long-term risk of mortality and cardiovascular events compared to other oral glucose-lowering treatments. Diabetes Ther 2018; 9: 1431-1440
  • 59 Simpson SH, Lee J, Choi S. et al. Mortality risk among sulfonylureas: a systematic review and network meta-analysis. Lancet Diabetes Endocrinol 2015; 3: 43-51
  • 60 Hemmingsen B, Schroll JB, Lund SS. et al. Sulphonylurea monotherapy for patients with type 2 diabetes mellitus. Cochrane Database Syst Rev 2013; 4: CD009008
  • 61 Hemmingsen B, Schroll JB, Jorn Wetterslev J. et al. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2: E162-E175
  • 62 Vaccaro O, Masulli M, Nicolucci M. et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomized, multicenter trial. Lancet Diabetes Endocrinol 2017; 5: 887-897
  • 63 Ogundipe O, Mazidi M, Chin KL. et al. Real-world adherence, persistence, and in-class switching during use of dipeptidyl peptidase-4 inhibitors: a systematic review and meta-analysis involving 594,138 patients with type 2 diabetes. Acta Diabetol 2021; 58: 39-46
  • 64 Khan MS, Solomon N, DeVore AD. Clinical Outcomes With Metformin and Sulfonylurea Therapies Among Patients With Heart Failure and Diabetes. JACC Heart Fail 2022; 10: 198-210
  • 65 Volke V, Katus U, Johannson A. et al. Systematic review and meta-analysis of head-to-head trials comparing sulfonylureas and low hypoglycaemic risk antidiabetic drugs. BMC Endocr Disord 2022; 22: 251
  • 66 Wang H, Cordiner RLM, Huangm Y. et al. Cardiovascular Safety in Type 2 Diabetes With Sulfonylureas as Second-Line Drugs: A Nation-Wide Population-Based Comparative Safety Study. Diabetes Care 2023; 46: 967-977
  • 67 Davies MJ, Aroda VR, Collins BS. et al. Management of hyperglycemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022; 45: 2753-2786
  • 68 Chen K, Kang D, Yu M. et al. Direct head-to-head comparison of glycaemic durability of dipeptidyl peptidase-4 inhibitors and sulphonylureas in patients with type 2 diabetes mellitus: A meta-analysis of long-term randomized controlled trials. Diabetes Obes Metab 2018; 20: 1029-1033
  • 69 Patorno E, Schneeweiss S, Gopalakrishnan C. et al. Using real world data to predict findings of an ongoing phase IV cardiovascular outcome trial: Cardiovascular safety of linagliptin versus glimepiride. Diabetes Care 2019; 42: 2204-2210
  • 70 Scirica BM, Bhatt DL, Braunwald E. et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med 2013; 369: 1317-1326
  • 71 White WB, Cannon CP, Heller SR. et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med 2013; 369: 1327-1335
  • 72 Green JB, Bethel MA, Armstrong PW. et al. TECOS Study Group. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2015; 373: 232-242
  • 73 Rosenstock J, Perkovic V, Johansen OE. et al. Effect of linagliptin vs placebo on major cardiovascular Events in adults with type 2 diabetes and high cardiovascular and renal risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321: 69-79
  • 74 Perkovic V, Toto R, Cooper ME. et al. Effects of Linagliptin on Cardiovascular and Kidney Outcomes in People With Normal and Reduced Kidney Function: Secondary Analysis of the CARMELINA Randomized Trial. Diabetes Care 2020; 43: 1803-1812
  • 75 Monami M, Ahrén B, Dicembrini I. et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab 2013; 15: 112-120
  • 76 Xu S, Zhang X, Tang L. et al. Cardiovascular effects of dipeptidylpeptidase-4 inhibitor in diabetic patients with and without established cardiovascular disease: a meta-analysis and systematic review. Postgrad Med 2017; 129: 205-215
  • 77 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagon-like peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all cause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319: 1580-1591
  • 78 Ling J, Cheng P, Ge L. et al. The efficacy and safety of dipeptidyl peptidase-4 inhibitors for type 2 diabetes: a Bayesian network metaanalysis of 58 randomized controlled trials. Acta Diabetol 2019; 56: 249-272
  • 79 Li L, Li S, Deng K. et al. Dipeptidyl peptidase-4 inhibitors and risk of heart failure in type 2 diabetes: systematic review and meta-analysis of randomized and observational studies. BMJ 2016; 352: i610
  • 80 Guo WQ, Li L, Su Q. et al. Effect of dipeptidylpeptidase-4 inhibitors on heart failure: A network meta-analysis. Value Health 2017; 20: 1427-1430
  • 81 Nauck MA, Meier JJ, Cavender MA. et al. Cardiovascular actions and clinical outcomes with glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Circulation 2017; 136: 849-870
  • 82 Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019; 150: 8-16
  • 83 Xie Y, Bowe B, Gibson AK. et al. Comparative Effectiveness of SGLT2 Inhibitors, GLP-1 Receptor Agonists, DPP-4 Inhibitors, and Sulfonylureas on Risk of Kidney Outcomes: Emulation of a Target Trial Using Health Care Databases. Diabetes Care 2020; 43: 2859-2869
  • 84 Kanie T, Mizuno A, Takaoka Y. et al. Dipeptidyl peptidase-4 inhibitors, glucagon-like peptide 1 receptor agonists and sodium-glucose co-transporter-2 inhibitors for people with cardiovascular disease. a network meta-analysis Cochrane Database Syst Rev 2021; 10: CD013650
  • 85 The GRADE Study Research Group. Glycemia Reduction in Type 2 Diabetes — Glycemic Outcomes. N Engl J Med 2022; 387: 1063-1074
  • 86 The GRADE Study Research Group. Glycemia Reduction in Type 2 Diabetes — Microvascular and Cardiovascular Outcomes. N Engl J Med 2022; 387: 1075-1088
  • 87 Dougherty J, Guirguis E, Thornby KA. et al. A Systematic Review of Newer Antidiabetic Agents in the Treatment of Nonalcoholic Fatty Liver Disease. Ann Pharmacother 2021; 55: 65-79
  • 88 Kumar J, Memon RS, Shahid I. et al. Antidiabetic drugs and nonalcoholic fatty liver disease: A systematic review, meta-analysis and evidence map. Dig Liver Dis 2021; 53: 44-51
  • 89 Roeb E, Canbay A, Bantel H. et al. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). April 2022 – AWMF-Registernummer: 021-025
  • 90 Koufakis T, Mustafa OG, Zebekakis P. et al. Oral antidiabetes agents for the management of inpatient hyperglycaemia: so far, yet so close. Diabet Med 2020; 37: 1418-1426
  • 91 Du H, Wang DW, Chen C. The potential effects of DPP-4 inhibitors on cardiovascular system in COVID-19 patients. J Cell Mol Med 2020; 24: 10274-10278
  • 92 Bonora BM, Avogaro A, Fadini GP. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: narrative review and meta-analysis. J Endocrinol Invest 2021; 44: 1379-1386
  • 93 Yang Y, Cai Z, Zhang J. DPP-4 inhibitors may improve the mortality of coronavirus disease 2019: A meta-analysis. PLoS One 2021; 16: e0251916
  • 94 Khunti K, Knighton P, Zaccardi F. et al. Prescription of glucose lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol 2021; 9: 293-303
  • 95 Nguyen NN, Ho DS, Nguyen HS. et al. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metabolism 2022; 131: 155196
  • 96 Tkáč I, Raz I. Combined analysis of three large interventional trials with gliptins indicates increased incidence of acute pancreatitis in patients with type 2 diabetes. Diabetes Care 2017; 40: 284-286
  • 97 Pinto LC, Rados DV, Barkann SS. et al. Dipeptidyl peptidase-4 inhibitors, pancreatic cancer and acute pancreatitis: A meta-analysis with trial sequential analysis. Sci Rep 2018; 8: 782
  • 98 Tasanen K, Varpuluoma O, Nishie W. Dipeptidyl Peptidase-4 Inhibitor-Associated Bullous Pemphigoid. Front Immunol 2019; 10: 1238
  • 99 Overbeek JA, Bakker M, van der Heijden AAWA. et al. Risk of dipeptidyl peptidase-4 (DPP-4) inhibitors on site specific cancer: A systematic review and meta-analysis. Diabetes Metab Res Rev 2018; 34: e3004
  • 100 Dicembrini I, Montereggi C, Nreu B. et al. Pancreatitis and pancreatic cancer in patientes treated with Dipeptidyl Peptidase-4 inhibitors: An extensive and updated meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2020; 159: 107981
  • 101 Abrahami D, Douros A, Yin H. et al. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: population based cohort study. BMJ 2018; 360: k872
  • 102 Li G, Crowley MJ, Tang H. et al. Dipeptidyl peptidase 4 inhibitors and risk of inflammatory bowel disease among patients with type 2 diabetes: A meta-analysis of randomized controlled trials. Diabetes Care 2019; 42: e119-e121
  • 103 Radel JA, Pender DN, Shah SA. Dipeptidyl Peptidase-4 Inhibitors and Inflammatory Bowel Disease Risk: A Meta-analysis. Ann Pharmacother 2019; 53: 697-704
  • 104 He L, Wang J, Ping F. et al. Dipeptidyl peptidase-4 inhibitors and gallbladder or biliary disease in type 2 diabetes: systematic review and pairwise and network meta-analysis of randomised controlled trials. BMJ 2022; 377: e068882
  • 105 Storgaard H, Gluud LL, Bennett C. et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: A systematic review and meta-analysis. PLoS One 2016; 11: e0166125
  • 106 Monami M, Liistro F, Scatena A. et al. Short and medium-term efficacy of sodium glucose co-transporter-2 (SGLT-2) inhibitors: A meta-analysis of randomized clinical trials. Diabetes Obes Metab 2018; 20: 1213-1222
  • 107 Usman MS, Siddiqi TJ, Memon MM. et al. Sodium-glucose cotransporter 2 inhibitors and cardiovascular outcomes: A systematic review and meta-analysis. Eur J Prev Cardiol 2018; 25: 495-502
  • 108 Mishriky BM, Tanenberg RJ, Sewell KA. et al. Comparing SGLT-2 inhibitors to DPP-4 inhibitors as an add-on therapy to metformin in patients with type 2 diabetes: A systematic review and metaanalysis. Diabetes Metab 2018; 44: 112-120
  • 109 Seidu S, Kunutsor SK, Cos X. et al. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis. Prim Care Diabetes 2018; 12: 265-283
  • 110 Rådholm K, Wu JH, Wong MG. et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular disease, death and safety outcomes in type 2 diabetes – A systematic review. Diabetes Res Clin Pract 2018; 140: 118-128
  • 111 Sinha B, Ghosal S. Meta-analyses of the effects of DPP-4 inhibitors, SGLT2 inhibitors and GLP1 receptor analogues on cardiovascular death, myocardial infarction, stroke and hospitalization for heart failure. Diabetes Res Clin Pract 2019; 150: 8-16
  • 112 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagonlike peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with all-cause mortality in patients with type 2 diabetes: A Systematic Review and Meta-analysis. JAMA 2018; 319: 1580-1591
  • 113 Aronson R, Frias J, Goldman A. et al. Long-term efficacy and safety of ertugliflozin monotherapy in patients with inadequately controlled T2DMdespite diet and exercise: VERTIS MONO extension study. Diabetes Obes Metab 2018; 20: 1453-1460
  • 114 Hollander P, Hill J, Johnson J. et al. Results of VERTIS SU extension study: safety and efficacy of ertugliflozin treatment over 104 weeks compared to glimepiride in patients with type 2 diabetes mellitus inadequately controlled on Metformin. Curr Med Res Opin 2019; 35: 1335-1343
  • 115 Zelniker TA, Wiviott SD, Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019; 393: 31-39
  • 116 Zaman M, Memon RS, Amjad A. et al. Effect of ertugliflozin on glycemic levels, blood pressure and body weight of patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Diabetes Metab Disord 2020; 19: 1873-1878
  • 117 Tsapas A, Karagiannis T, Kakotrichi P. et al. Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetes Obes Metab 2021; 23: 2116-2124
  • 118 Täger T, Atar D, Agewall S. et al. Comparative efficacy of sodium-glucose cotransporter-2 inhibitors (SGLT2i) for cardiovascular outcomes in type 2 diabetes: a systematic review and network meta-analysis of randomised controlled trials. Heart Fail Rev 2021; 26: 1421-1435
  • 119 Liu L, Shi FH, Xu H. et al. Efficacy and Safety of Ertugliflozin in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Front Pharmacol 2022; 12: 752440
  • 120 Duan XY, Liu SY, Yin DG. Comparative efficacy of 5 sodium glucose cotransporter 2 inhibitor and 7 glucagon-like peptide 1 receptor agonists interventions on cardiorenal outcomes in type 2 diabetes patients: A network meta-analysis based on cardiovascular or renal outcome trials. Medicine (Baltimore) 2021; 100: e26431
  • 121 Braunwald E. Gliflozins in the Management of Cardiovascular Disease. N Engl J Med 2022; 386: 2024-2034
  • 122 Puckrin R, Saltiel MP, Reynier P. et al. SGLT-2 inhibitors and the risk of infections: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2018; 55: 503-514
  • 123 Lega IC, Bronskill SE, Campitelli MA. et al. Sodium glucose cotransporter 2 inhibitors and risk of genital mycotic and urinary tract infection: A population-based study of older women and men with diabetes. Diabetes Obes Metab 2019; 21: 2394-2404
  • 124 Dave CV, Schneeweiss S, Patorno E. Comparative risk of genital infections associated with sodium glucose co-transporter-2 inhibitors. Diabetes Obes Metab 2019; 21: 434-438
  • 125 McGovern AP, Hogg M, Shields BM. et al. Risk factors for genital infections in people initiating SGLT2 inhibitors and their impact on discontinuation. BMJ Open Diab Res Care 2020; 8: e001238
  • 126 Engelhardt K, Ferguson MCK, Rosselli JL. Prevention and Management of Genital Mycotic Infections in the Setting of Sodium-Glucose Cotransporter 2 Inhibitors. Ann Pharmacother 2021; 55: 543-548
  • 127 Ge S, Liu R, Mao Y. et al. Safety of SGLT2 Inhibitors in Three Chronic Diseases. Int Heart J 2023; 64: 246-251
  • 128 Yang JY, Wang T, Pate V. et al. Real-world evidence on sodium2glucose cotransporter-2 inhibitor use and risk of Fournier’s gangrene. BMJ Open Diab Res Care 2020; 8: e000985
  • 129 Silverii GA, Dicembrini I, Monami M. et al. Fournier’s gangrene and sodium-glucose co-transporter-2 inhibitors: A meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22: 272-275
  • 130 Neal B, Perkovic V, Mahaffey KW. et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377: 644-657
  • 131 Huang CY, Lee JK. Sodium-glucose co-transporter-2 inhibitors and major adverse limb events: A trial-level meta-analysis including 51 713 Individuals. Diabetes Obes Metab 2020; 22: 2348-2355
  • 132 Bai Y, Jin J, Zhou W. et al. The safety outcomes of sodium-glucose cotransporter 2 inhibitors in patients with different renal function: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 2021; 31: 1365-1374
  • 133 Paul SK, Bhatt DL, Montvida O. The association of amputations and peripheral artery disease in patients with type 2 diabetes mellitus receiving sodium-glucose cotransporter type-2 inhibitors: real-world study. Eur Heart J 2021; 42: 1728-1738
  • 134 Ruanpeng D, Ungprasert P, Sangtian J. et al. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis. Diabetes Metab Res Rev 2017; 33: e2903
  • 135 Tang HL, Li DD, Zhang JJ. et al. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials. Diabetes Obes Metab 2016; 18: 1199-1206
  • 136 Li X, Li T, Cheng Y. et al. Effects of SGLT2 inhibitors on fractures and bone mineral density in type 2 diabetes: An updated metaanalysis. Diabetes Metab Res Rev 2019; 35: e3170
  • 137 Hidayat K, Du X, Shi BM. Risk of fracture with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors in real-world use: systematic review and meta-analysis of observational studies. Osteoporos Int 2019; 30: 1923-1940
  • 138 Zhuo M, Hawley CE, Paik JM. et al. Association of Sodium-Glucose Cotransporter-2 Inhibitors With Fracture Risk in Older Adults With Type 2 Diabetes. JAMA Netw Open 2021; 4: e2130762
  • 139 Fralick M, Schneeweiss S, Patorno E. Risk of diabetic ketoacidosis after initiation of an SGLT2 inhibitor. N Engl J Med 2017; 376: 2300-2303
  • 140 Monami M, Nreu B, Zannoni S. et al. Effects of SGLT2 inhibitors on diabetic ketoacidosis: A meta-analysis of randomised controlled trials. Diabetes Res Clin Pract 2017; 130: 53-60
  • 141 Fadini GP, Bonora BM, Avogaro A. SGLT2 inhibitors and diabetic ketoacidosis: data from the FDA Adverse Event Reporting System. Diabetologia 2017; 60: 1385-1389
  • 142 Liu J, Li L, Li S. et al. Sodium-glucose co-transporter-2 inhibitors and the risk of diabetic ketoacidosis in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22: 1619-1627
  • 143 Lin DS, Lee JK, Chen WJ. Clinical Adverse Events Associated with Sodium-Glucose Cotransporter 2 Inhibitors: A Meta-Analysis Involving 10 Randomized Clinical Trials and 71 553 Individuals. J Clin Endocrinol Metab 2021; 106: 2133-2145
  • 144 Thiruvenkatarajan V, Meyer EJ, Nanjappa N. et al. Perioperative diabetic ketoacidosis associated with sodium-glucose cotransporter-2 inhibitors: a systematic review. Br J Anaesth 2019; 123: 27e36
  • 145 Milder DA, Milder TY, Kam PCA. Sodium-glucose co-transporter type-2 inhibitors: pharmacology and perioperative considerations. Anaesthesia 2018; 73: 1008-1018
  • 146 Donnan K, Segar L. SGLT2 inhibitors and metformin: Dual antihyperglycemic therapy and the risk of metabolic acidosis in type 2 diabetes. Eur J Pharmacol 2019; 846: 23-29
  • 147 Shi Q, Nong K, Vandvik PO. et al. Benefits and harms of drug treatment for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2023; 381: e074068
  • 148 He G, Yang G, Huang X. et al. SGLT2 inhibitors for prevention of primary and secondary cardiovascular outcomes: A meta-analysis of randomized controlled trials. Heart Lung 2023; 59: 109-116
  • 149 Aziri B, Begic E, Jankovic S. et al. Systematic review of sodiumglucose cotransporter 2 inhibitors: a hopeful prospect in tackling heart failure-related events. ESC Heart Fail 2023; 10: 1499-1530
  • 150 Ahmad Y, Madhavan MV, Stone GW. et al. Sodium-glucose cotransporter 2 inhibitors in patients with heart failure: a systematic review and meta-analysis of randomized trials. Eur Heart J Qual Care Clin Outcomes 2022; 8: 383-390
  • 151 Vaduganathan M, Docherty KF, Claggett BL. et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 2022; 400: 757-767
  • 152 Marilly E, Cottin J, Cabrera N. et al. SGLT2 inhibitors in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials balancing their risks and benefits. Diabetologia 2022; 65: 2000-2010
  • 153 Cao H, Rao X, Jia J. et al. Effects of sodium-glucose co-transporter-2 inhibitors on kidney, cardiovascular, and safety outcomes in patients with advanced chronic kidney disease: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2023; 60: 325-335
  • 154 Mannucci E, Gallo M, Giaccari A. et al. for SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes Effects of glucose-lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: An updated meta-analysis of randomized controlled trials with external adjudication of events. Diabetes Obes Metab 2023; 25: 444-453
  • 155 Wiviott SD, Raz I, Bonaca MP. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380: 347-357
  • 156 Mosenzon O, Wiviott SD, Cahn A. et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol 2019; 7: 606-617
  • 157 Heerspink HJL, Stefánsson BV, Correa-Rotter R. et al. DAPACKD Trial Committees and Investigators Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2020; 383: 1436-1446
  • 158 Mosenzon O, Raz I, Wiviott SD. et al. Dapagliflozin and Prevention of Kidney Disease Among Patients With Type 2 Diabetes: Post Hoc Analyses From the DECLARE-TIMI 58 Trial. Diabetes Care 2022; 45: 2350-2359
  • 159 Furtado RHM, Bonaca MP, Raz I. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and Previous Myocardial Infarction. Circulation 2019; 139: 2516-2527
  • 160 Kato ET, Silverman MG, Mosenzon O. et al. Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 2019; 139: 2528-2536
  • 161 Schechter M, Wiviott SD, Raz I. et al. Effects of dapagliflozin on hospitalisations in people with type 2 diabetes: post-hoc analyses of the DECLARE-TIMI 58 trial. Lancet Diabetes Endocrinol 2023; 11: 233-241
  • 162 McMurray JJV, Solomon SD, Inzucchi SE. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. DAPA-HF study. N Engl J Med 2019; 381: 1995-2008
  • 163 Nassif ME, Windsor SL, Borlaug BA. et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med 2021; 27: 1954-1960
  • 164 Wheeler DC, Stefánsson BV, Jongs N. et al. Effects of dapagliflozin on major adverse kidney and cardiovascular events in patients with diabetic and non-diabetic chronic kidney disease: a prespecified analysis from the DAPA-CKD trial. Lancet Diabetes Endocrinol 2021; 9: 22-31
  • 165 Waijer SW, Vart P, Cherney DZI. et al. Effect of dapagliflozin on kidney and cardiovascular outcomes by baseline KDIGO risk categories: a post hoc analysis of the DAPA-CKD trial. Diabetologia 2022; 65: 1085-1097
  • 166 Kaze AD, Zhuo M, Seoyoung C. et al. Association of SGLT2 inhibitors with cardiovascular, kidney, and safety outcomes among patients with diabetic kidney disease: a meta-analysis. Cardiovasc Diabetol 2022; 21: 47
  • 167 Solomon SD, McMurray JJV, Claggett B. et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N Engl J Med 2022; 387: 1089-1098
  • 168 Peikert A, Martinez FA, Vaduganathan M. et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Mildly Reduced or Preserved Ejection Fraction According to Age: The DELIVER Trial. Circ Heart Fail 2022; 15: e010080
  • 169 Cunningham JW, Vaduganathan M, Claggett BL. Dapagliflozin in Patients Recently Hospitalized With Heart Failure and Mildly Reduced or Preserved Ejection Fraction. J Am Coll Cardiol 2022; 80: 1302-1310
  • 170 Vardeny O, Fang JC, Desai AS. Dapagliflozin in heart failure with improved ejection fraction: a prespecified analysis of the DELIVER trial. Nat Med 2022; 28: 2504-2511
  • 171 Mc Causland FR, Claggett BL, Vaduganathan M. et al. Dapagliflozin and Kidney Outcomes in Patients With Heart Failure With Mildly Reduced or Preserved Ejection Fraction: A Prespecified Analysis of the DELIVER Randomized Clinical Trial. JAMA Cardiol 2023; 8: 56-65
  • 172 Jhund PS, Kondo T, Butt JH. et al. Dapagliflozin across the range of ejection fraction in patients with heart failure: a patientlevel, pooled meta-analysis of DAPA-HF and DELIVER. Nat Med 2022; 28: 1956-1964
  • 173 Kawai Y, Uneda K, Yamada T. et al. Comparison of effects of SGLT-2 inhibitors and GLP-1 receptor agonists on cardiovascular and renal outcomes in type 2 diabetes mellitus patients with/without albuminuria: A systematic review and network metaanalysis. Diabetes Res Clin Pract 2022; 183: 109146
  • 174 Neuen BL, Young T, Heerspink HJL. SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol 2019; 7: 845-854
  • 175 Karagiannis T, Tsapas A, Athanasiadou E. et al. GLP-1 receptor agonists and SGLT2 inhibitors for older people with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 2021; 174: 108737
  • 176 Bae JH, Park EG, Kim S. et al. Comparative Renal Effects of Dipeptidyl Peptidase-4 Inhibitors and Sodium-Glucose Cotransporter 2 Inhibitors on Individual Outcomes in Patients with Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Endocrinol Metab (Seoul) 2021; 36: 388-400
  • 177 Palmer SC, Tendal B, Mustafa RA. et al. Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials. BMJ 2021; 372: m4573
  • 178 Zinman B, Wanner C, Lachin JM. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373: 2117-2128
  • 179 Inzucchi SE, Khunti K, Fitchett DH. et al. Cardiovascular Benefit of Empagliflozin Across the Spectrum of Cardiovascular Risk Factor Control in the EMPA-REG OUTCOME Trial. J Clin Endocrinol Metab 2020; 105: 3025-3035
  • 180 McGuire DK, Zinman B, Inzucchi SE. et al. Effects of empagliflozin on first and recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a secondary analysis of the EMPA-REG OUTCOME trial. Lancet Diabetes Endocrinol 2020; 8: 949-959
  • 181 Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016; 375: 323-334
  • 182 Cherney DZI, Zinman B, Inzucchi SE. et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebocontrolled trial. Lancet Diabetes Endocrinol 2017; 5: 610-621
  • 183 Verma S, Mazer CD, Fitchett D. et al. Empagliflozin reduces cardiovascular events, mortality and renal events in participants with type 2 diabetes after coronary artery bypass graft surgery: sub-analysis of the EMPA-REG OUTCOME randomized trial. Diabetologia 2018; 61: 1712-1723
  • 184 Packer M, Anker SD, Butler J. et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020; 383: 1413-1424
  • 185 Packer M, Anker SD, Butler J. et al. Effect of Empagliflozin on the Clinical Stability of Patients With Heart Failure and a Reduced Ejection Fraction: The EMPEROR-Reduced Trial. Circulation 2021; 143: 326-336
  • 186 Anker SD, Butler J, Filippatos G. et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients With Heart Failure by Baseline Diabetes Status: Results From the EMPEROR-Reduced Trial. Circulation 2021; 143: 337-349
  • 187 Verma S, Dhingra NK, Butler J. et al. EMPEROR-Reduced trial committees and investigators.Empagliflozin in the treatment of heart failure with reduced ejection fraction in addition to background therapies and therapeutic combinations (EMPEROR-Reduced): a post-hoc analysis of a randomised, double-blind trial. Lancet Diabetes Endocrinol 2022; 10: 35-45
  • 188 Anker SD, Butler J, Filippatos G. et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med 2021; 385: 1451-1461
  • 189 Butler J, Filippatos G, Siddiqi TJ. et al. Effects of Empagliflozin in Women and Men With Heart Failure and Preserved Ejection Fraction. Circulation 2022; 146: 1046-1055
  • 190 Packer M, Butler J, Zannad F. et al. for the EMPEROR Study Group. Empagliflozin and Major Renal Outcomes in Heart Failure. N Engl J Med 2021; 385: 1531-1533
  • 191 Butler J, Milton Packer M, Filippatos G. et al. Effect of Empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J 2022; 43: 416-426
  • 192 Bhm M, Anker S, Mahfoud F. Empagliflozin, irrespective of blood pressure, improves outcomes in heart failure with preserved ejection fraction: the EMPEROR-Preserved trial. Eur Heart J 2023; 44: 396-407
  • 193 Sharma A, Ferreira JP, Zannad F. et al. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from the EMPEROR-Preserved trial. Eur J Heart Fail 2023; 25: 1337-1348
  • 194 Kosiborod MN, Angermann CE, Collins SP. et al. Effects of Empagliflozin on Symptoms, Physical Limitations, and Quality of Life in Patients Hospitalized for Acute Heart Failure: Results From the EMPULSE Trial. Circulation 2022; 146: 279-288
  • 195 Biegus J, Voors AA, Collins SP. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J 2023; 44: 41-50
  • 196 Staplin N, Wanner C. et al. The EMPA-KIDNEY Collaborative Group; Herrington WG. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med 2023; 388: 117-127
  • 197 Alnsasra H, Tsaban G, Solomon A. et al. Effect of Dapagliflozin Versus Empagliflozin on Cardiovascular Death in Patients with Heart Failure Across the Spectrum of Ejection Fraction: Cost per Outcome Analysis. Am J Cardiovasc Drugs 2023; 23: 323-328
  • 198 Cannon CP, Pratley R, Dagogo-Jack S. et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med 2020; 383: 1425-1435
  • 199 Rosenstock J, Frias J, Páll D. et al. Effect of ertugliflozin on glucose control, body weight, blood pressure and bone density in type 2 diabetes mellitus inadequately controlled on metformin monotherapy (VERTIS MET). Diabetes Obes Metab 2018; 20: 520-529
  • 200 Hollander P, Liu J, Hill J. et al. Ertugliflozin Compared with Glimepiride in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Metformin: The VERTIS SU Randomized Study. Diabetes Ther 2018; 9: 193-207
  • 201 Cherney DZI, Heerspink HJL, Frederich R. et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials. Diabetologia 2020; 63: 1128-1140
  • 202 Cherney DZI, Charbonnel B, Cosentino F. Effects of ertugliflozin on kidney composite outcomes, renal function and albuminuria in patients with type 2 diabetes mellitus: an analysis from the randomised VERTIS CV trial; VERTIS CV Investigators. Diabetologia 2021; 64: 1256-1267
  • 203 Marrs JC, Anderson SL. Ertugliflozin in the treatment of type 2 diabetes mellitus. Drugs Context 2020; 9: 7-4
  • 204 Dagogo-Jack S, Pratley RE, Cherney DZI. et al. Glycemic efficacy and safety of the SGLT2 inhibitor ertugliflozin in patients with type 2 diabetes and stage 3 chronic kidney disease: an analysis from the VERTIS CV randomized trial. BMJ Open Diabetes Res Care 2021; 9: e002484
  • 205 Pratley RE, Cannon CP, Cherney DZI. Cardiorenal outcomes, kidney function, and other safety outcomes with ertugliflozin in older adults with type 2 diabetes (VERTIS CV): secondary analyses from a randomised, double-blind trial. Lancet Healthy Longev 2023; 4: e143-e154
  • 206 Cheng Q, Zou S, Feng C. et al. Effect of ertugliflozin on renal function and cardiovascular outcomes in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102: e33198
  • 207 Zhao LM, Huang JN, Qiu M. et al. Gliflozins for the prevention of stroke in diabetes and cardiorenal diseases: A meta-analysis of cardiovascular outcome trials. Medicine (Baltimore) 2021; 100: e27362
  • 208 Perkovic V, Jardine MJ, Neal B. et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med 2019; 380: 2295-2306
  • 209 Yu J, Li J, Leaver PJ. et al. Effects of canagliflozin on myocardial infarction: a post hoc analysis of the CANVAS Program and CREDENCE trial. Cardiovasc Res 2022; 118: 1103-1114
  • 210 Zhou F, Du N, Zhou L. et al. The safety of sotagliflozin in the therapy of diabetes mellitus type 1 and type 2: A meta-analysis of randomized trials. Front Endocrinol (Lausanne) 2022; 13: 968478
  • 211 Bhatt DL, Szarek M, Steg PG. et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med 2021; 384: 117-128
  • 212 Bhatt DL, Szarek M, Pitt B. et al. for SCORED investigators. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med 2021; 384: 129-139
  • 213 Avgerinos I, Karagiannis T, Kakotrichi P. et al. Sotagliflozin for patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2022; 24: 106-114
  • 214 Zhou P, Tan Y, Hao Z. et al. Effects of SGLT2 inhibitors on hepatic fibrosis and steatosis: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 14: 1144838
  • 215 Gu Y, Sun L, Zhang W. et al. Comparative efficacy of 5 sodium-glucose cotransporter protein-2 (SGLT-2) inhibitor and 4 glucagon-like peptide-1 (GLP-1) receptor agonist drugs in non-alcoholic fatty liver disease: A GRADE-assessed systematic review and network meta-analysis of randomized controlled trials. Front Pharmacol 2023; 14: 1102792
  • 216 Alfayez AI, Alfallaj JM, Mobark MA. et al. An update on the effect of sodium glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease: A systematic review of clinical trials. Curr Diabetes Rev 2023; May 25 DOI: 10.2174/1573399820666230525150437.. Online ahead of print
  • 217 Zou CY, Liu XK, Sang YQ. et al. Effects of SGLT2 inhibitors on cardiovascular outcomes and mortality in type 2 diabetes. A metaanalysis. Medicine (Baltimore) 2019; 98: e18245
  • 218 Salah HM, AlʼAref SJ, Khan MS. et al. Effects of sodium-glucose cotransporter 1 and 2 inhibitors on cardiovascular and kidney outcomes in type 2 diabetes: A meta-analysis update. Am Heart J 2021; 233: 86-91
  • 219 Qiu M, Ding L, Zhou H. Effects of SGLT2 inhibitors on cardiovascular and renal outcomes in type 2 diabetes: A meta-analysis with trial sequential analysis. Medicine 2021; 100: e25121
  • 220 Yamada T, Wakabayashi M, Bhalla A. et al. Cardiovascular and renal outcomes with SGLT-2 inhibitors versus GLP-1 receptor agonists in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and network meta-analysis. Cardiovasc Diabetol 2021; 20: 14
  • 221 Li CX, Liang S, Gao L. et al. Cardiovascular outcomes associated with SGLT-2 inhibitors versus other glucose-lowering drugs in patients with type 2 diabetes: A real-world systematic review and meta-analysis. PLoS One 2021; 16: e0244689
  • 222 Lin FJ, Wang CC, Hsu CN. et al. Reno-protective effect of SGLT-2 inhibitors among type 2 diabetes patients with different baseline kidney function: a multi-center study. Cardiovasc Diabetol 2021; 20: 203
  • 223 Lin DS, Lee JK, Hung CS. et al. The efficacy and safety of novel classes of glucose-lowering drugs for cardiovascular outcomes: a network meta-analysis of randomised clinical trials. Diabetologia 2021; 64: 2676-2686
  • 224 Teo YH, Yoong CSY, Syn NL. et al. Comparing the clinical outcomes across different sodium/glucose cotransporter 2 (SGLT2) inhibitors in heart failure patients: a systematic review and network meta-analysis of randomized controlled trials. Eur J Clin Pharmacol 2021; 77: 1453-1464
  • 225 Teo YH, Teo YN, Syn NL. et al. Effects of Sodium/Glucose Cotransporter 2 (SGLT2) Inhibitors on Cardiovascular and Metabolic Outcomes in Patients Without Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. J Am Heart Assoc 2021; 10: e019463
  • 226 Barbarawi M, Al-Abdouh A, Barbarawi O. et al. SGLT2 inhibitors and cardiovascular and renal outcomes: a meta-analysis and trial sequential analysis. Heart Fail Rev 2022; 27: 951-960
  • 227 Giugliano D, Longo M, Scappaticcio L. et al. SGLT-2 inhibitors and cardiorenal outcomes in patients with or without type 2 diabetes: a meta-analysis of 11 CVOTs. Cardiovasc Diabetol 2021; 20: 236
  • 228 Giugliano D, Longo M, Caruso P. et al. Sodium-glucose cotransporter-2 inhibitors for the prevention of cardiorenal outcomes in type 2 diabetes: An updated meta-analysis. Diabetes Obes Metab 2021; 23: 1672-1676
  • 229 Duan XY, Liu SY, Yin DG. Comparative efficacy of 5 sodium glucose cotransporter 2 inhibitor and 7 glucagon-like peptide 1 receptor agonists interventions on cardiorenal outcomes in type 2 diabetes patients: A network meta-analysis based on cardiovascular or renal outcome trials. Medicine (Baltimore) 2021; 100: e26431
  • 230 Kaze AD, Zhuo M, Kim SC. et al. Association of SGLT2 inhibitors with cardiovascular, kidney, and safety outcomes among patients with diabetic kidney disease: a meta-analysis. Cardiovasc Diabetol 2022; 21: 47231
  • 231 The Nuffield Department of Population Health Renal Studies Group* and the SGLT2 inhibitor Meta-Analysis Cardio-Renal Trialists’ Consortium. Impact of diabetes on the effects of sodium glucose cotransporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet 2022; 400: 1788-1801
  • 232 He G, Yang G, Huang X. et al. SGLT2 inhibitors for prevention of primary and secondary cardiovascular outcomes: A meta-analysis of randomized controlled trials. Heart Lung 2023; 59: 109-116
  • 233 Mannucci E, Gallo M, Giaccari A. et al. for SID-AMD joint panel for Italian Guidelines on Treatment of Type 2 Diabetes Effects of glucose-lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: An updated meta-analysis of randomized controlled trials with external adjudication of events. Diabetes Obes Metab 2023; 25: 444-453
  • 234 Yang Q, Lang Y, Yang W. et al. Efficacy and safety of drugs for people with type 2 diabetes mellitus and chronic kidney disease on kidney and cardiovascular outcomes: A systematic review and network meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2023; 198: 110592
  • 235 Liu Y, An C, Liu P. et al. Comparative safety of sodium-glucose co-transporter 2 inhibitors in elderly patients with type 2 diabetes mellitus and diabetic kidney disease: a systematic review and metaanalysis. Ren Fail 2023; 45: 2217287
  • 236 Forbes AK, Suckling RJ, Hinton W. et al. Sodium-glucose cotransporter-2 inhibitors and kidney outcomes in real-world type 2 diabetes populations: A systematic review and meta-analysis of observational studies. Diabetes Obes Metab 2023; 25: 2310-2330
  • 237 Spiazzi BF, Naibo RA, Wayerbacher LF. et al. Sodium-glucose cotransporter-2 inhibitors and cancer outcomes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 2023; 198: 110621
  • 238 Sattar N, McLaren J, Kristensen SL. et al. SGLT2 Inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms?. Diabetologia 2016; 59: 1333-1339
  • 239 Ferrannini E, Mark M, Mayoux E. et al. CV Protection in the EMPA-REG OUTCOME Trial: A “thrifty substrate” hypothesis. Diabetes Care 2016; 39: 1108-1114
  • 240 Dutka M, Bobiński R, Ulman-Włodarz I. et al. Sodium glucose cotransporter 2 inhibitors: mechanisms of action in heart failure. Heart Fail Rev 2021; 26: 603-622
  • 241 Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 2018; 61: 2098-2210
  • 242 Yurista SR, Chong CR, Badimon JJ. et al. Therapeutic Potenzial of Ketone Bodies for Patients With Cardiovascular Disease: JACC Stateof-the-Art Review. J Am Coll Cardiol 2021; 77: 1660-1669
  • 243 Levin PA, Nguyen H, Wittbrodt ET. et al. Glucagon-like peptide-1 receptor agonists: a systematic review of comparative effectiveness research. Diabetes Metab Syndr Obes 2017; 10: 123-139
  • 244 Nauck MA, Kemmeries G, Holst JJ. et al Rapid tachyphylaxis of the glucagon-like peptide 1-induced deceleration of gastric emptying in humans. Diabetes 2011; 60: 1561-1565
  • 245 Meier JJ, Rosenstock J, Hincelin-Mery A. et al. Contrasting effects of lixisenatide and liraglutide on postprandial glycemic control, gastric emptying, and safety parameters in patients with type 2 diabetes on optimized insulin glargine with or without metformin: A randomized, open-label trial. Diabetes Care 2015; 38: 1263-1273
  • 246 Drucker DJ, Buse JB, Taylor K. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008; 372: 1240-1250
  • 247 Holman RR, Bethel MA, Mentz RJ. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med 2017; 377: 1228-1239
  • 248 Fudim M, White J, Pagidipati NJ. et al. Effect of Once-weekly exenatide in patients with type 2 diabetes mellitus with and without heart failure and heart failure-related outcomes. Insights from the EXSCEL trial. Circulation 2019; 140: 1613-1622
  • 249 Bonora BM, Avogaro A, Fadini GP. Effects of exenatide longacting release on cardiovascular events and mortality in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Acta Diabetol 2019; 56: 1051-1060
  • 250 Jabbour SA, Frías JP, Ahmed A. et al. Efficacy and Safety Over 2 Years of Exenatide Plus Dapagliflozin in the DURATION-8 Study: A Multicenter, Double-Blind, Phase 3, Randomized Controlled Trial. Diabetes Care 2020; 43: 2528-2536
  • 251 Bethel MA, Patel RA, Merrill P. et al. Cardiovascular outcomes with glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes: a meta-analysis. Lancet Diabetes Endocrinol 2018; 6: 105-113
  • 252 van der Aart-van der Beek AB, van Raalte DH, Guja C. et al. Exenatide once weekly decreases urinary albumin excretion in patients with type 2 diabetes and elevated albuminuria: Pooled analysis of randomized active controlled clinical trials. Diabetes Obes Metab 2020; 22: 1556-1566
  • 253 Tamborlane WV, Bishai R, Geller D. et al. Once-Weekly Exenatide in Youth With Type 2 Diabetes. Diabetes Care 2022; 45: 1833-1840
  • 254 Inaishi J, Saisho Y. Exenatide Once Weekly for Management of Type 2 Diabetes: A Review. Clin Pharmacol 2022; 14: 19-26
  • 255 Pfeffer MA, Claggett B, Diaz R. et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med 2015; 373: 2247-2257
  • 256 Home P, Blonde L, Kalra S. et al. Insulin glargine/lixisenatide fixed-ratio combination (iGlarLixi) compared with premix or addition of meal-time insulin to basal insulin in people with type 2 diabetes: A systematic review and Bayesian network meta-analysis. Diabetes Obes Metab 2020; 22: 2179-2188
  • 257 Ferrannini E, Niemoeller E, Dex T. et al. Fixed-ratio combination of insulin glargine plus lixisenatide (iGlarLixi) improves β-cell function in people with type 2 diabetes. Diabetes Obes Metab 2022; 24: 1159-1165
  • 258 Polonsky WH, Giorgino F, Rosenstock J. et al. Improved patient-reported outcomes with 258].in people with type 2 diabetes in the SoliMix trial. Diabetes Obes Metab 2022; 24: 2364-2372
  • 259 Lundgren JR, Janus C, Jensen SBK. et al. Healthy Weight Loss Maintenance with Exercise, Liraglutide, or Both Combined. N Engl J Med 2021; 384: 1719-1730
  • 260 Marso SP, Daniels GH, Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2016; 375: 311-322
  • 261 Verma S, Bhatt DL, Bain SC. et al. Effect of liraglutide on cardiovascular events in patients with type 2 diabetes mellitus and polyvascular disease. Circulation 2018; 137: 2179-2183
  • 262 Marso SP, Nauck MA, Monk Fries T. et al. Myocardial infarction subtypes in patients with type 2 diabetes mellitus and the effect of liraglutide therapy (from the LEADER Trial). Am J Cardiol 2018; 121: 1467-1470
  • 263 Duan CM, Wan TF, Wang Y. et al. Cardiovascular outcomes of liraglutide in patients with type 2 diabetes. A systematic review and meta-analysis. Medicine 2019; 98: e17860
  • 264 Mann JFE, Ørsted DD, Buse JB. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 2017; 377: 839-848
  • 265 Shaman AM, Bain SC, Bakris GL. et al. Effect of the Glucagon-Like Peptide-1 Receptor Agonists Semaglutide and Liraglutide on Kidney Outcomes in Patients With Type 2 Diabetes: Pooled Analysis of SUSTAIN 6 and LEADER. Circulation 2022; 145: 575-585
  • 266 Heller SR, Geybels MS, Iqbal A. et al. A higher non-severe hypoglycaemia rate is associated with an increased risk of subsequent severe hypoglycaemia and major adverse cardiovascular events in individuals with type 2 diabetes in the LEADER study. Diabetologia 2022; 65: 55-64
  • 267 Unger J, Allison DC, Kaltoft M. et al. Maintenance of glycaemic control with liraglutide versus oral antidiabetic drugs as add-on therapies in patients with type 2 diabetes uncontrolled with metformin alone: A randomized clinical trial in primary care (LIRA-PRIME). Diabetes Obes Metab 2022; 24: 204-211
  • 268 Kristensen SL, Rørth R, Jhund PS. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 2019; 7: 776-785
  • 269 Liu J, Li L, Deng K. et al. Incretin based treatments and mortality in patients with type 2 diabetes: systematic review and metaanalysis. BMJ 2017; 357: j2499
  • 270 Pasternak B, Wintzell V, Eliasson B. et al. Use of glucagon like peptide 1 receptor agonists and risk of serious renal events: Scandinavian cohort study. Diabetes Care 2020; 43: 1326-1335
  • 271 Nathan DM, Lachin JM, Balasubramanyam A. et al. for the GRADE Study Research Group. Glycemia Reduction in Type 2 Diabetes – Glycemic Outcomes. N Engl J Med 2022; 387: 1063-1074
  • 272 Nathan DM, Lachin JM, Bebu I. et al. for the GRADE Study Research Group. Glycemia Reduction in Type 2 Diabetes – Microvascular and Cardiovascular Outcomes. N Engl J Med 2022; 387: 1075-1088
  • 273 He F, Chen W, Xu W. et al. Safety and efficacy of liraglutide on reducing visceral and ectopic fat in adults with or without type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes Metab 2023; 25: 664-674
  • 274 Mac Isaac RJ. Dulaglutide and Insulin: How can the AWARD studies help guide clinical practice? Diabetes Ther 2020; 11: 1627-1638 @[221] Gerstein HC, Colhoun HM, Dagenais GR et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a doubleblind, randomised placebo-controlled trial. Lancet 2019; 394: 121-130
  • 275 Gerstein HC, Colhoun HM, Dagenais GR. et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomized, placebo-controlled trial. Lancet 2019; 394: 131-138
  • 276 Dagenais GR, Rydén L, Leiter LA. et al. Total cardiovascular or fatal events in people with type 2 diabetes and cardiovascular risk factors treated with dulaglutide in the REWIND trail: a post hoc analysis. Cardiovasc Diabetol 2020; 19: 199
  • 277 Ferrannini G, Gerstein H, Colhoun HM. et al. Similar cardiovascular outcomes in patients with diabetes and established or high risk for coronary vascular disease treated with dulaglutide with and without baseline metformin. Eur Heart J 2021; 42: 2565-2573
  • 278 Branch KRH, Dagenais GR, Avezum A. et al. Dulaglutide and cardiovascular and heart failure outcomes in patients with and without heart failure: a post-hoc analysis from the REWIND randomized trial. Eur J Heart Fail 2022; 24: 1805-1812
  • 279 Arslanian SA, Hannon T, Zeitler P. et al. for the AWARD-PEDS Investigators. Once-Weekly Dulaglutide for the Treatment of Youths with Type 2 Diabetes. N Engl J Med 2022; 387: 433-443
  • 280 Mishriky BM, Cummings DM, Powell JR. et al. Comparing once weekly semaglutide to incretin-based therapies in patients with type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab 2019; 45: 102-109
  • 281 Wilding JPH, Batterham RL, Calanna S. et al. STEP 1 Study Group.Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med 2021; 384: 989-1002
  • 282 Wadden TA, Bailey TS, Billings LK. et al. STEP 3 Investigators Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity: The STEP 3 Randomized Clinical Trial. JAMA 2021; 325: 1403-1413
  • 283 Rubino D, Abrahamsson N, Davies M. et al. STEP 4 Investigators. Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity: The STEP 4 Randomized Clinical Trial. JAMA 2021; 325: 1414-1425
  • 284 Marso SP, Bain SC, Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2016; 375: 1834-1844
  • 285 Leiter LA, Bain SC, Hramiak I. et al. Cardiovascular risk reduction with once-weekly semaglutide in subjects with type 2 diabetes: a post hoc analysis of gender, age, and baseline CV risk profile in the SUSTAIN 6 trial. Cardiovasc Diabetol 2019; 18: 73
  • 286 Stretton B, Kovoor J, Bacchi S. et al. Weight Loss With Subcutaneous Semaglutide Versus Other Glucagon Like Peptide-1 Receptor Agonists In Type 2 Diabetes: A Systematic Review. Intern Med J 2023; 53: 1311-1320
  • 287 Husain M, Birkenfeld AL, Donsmark M. et al. PIONEER 6 Investigators. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2019; 381: 841-851
  • 288 Avgerinos I, Michailidis T, Liakos A. et al. Oral semaglutide for type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2020; 22: 335-345
  • 289 Meier JJ. Efficacy of Semaglutide in a Subcutaneous and an Oral Formulation. Front Endocrinol (Lausanne) 2021; 12: 645617
  • 290 Aroda VR, Bauer R, Christiansen E. Efficacy and safety of oral semaglutide by subgroups of patient characteristics in the PIONEER phase 3 programme. Diabetes Obes Metab 2022; 24: 1338-1350
  • 291 Husain M, Bain SC, Holst AG. et al. Effects of semaglutide on risk of cardiovascular events across a continuum of cardiovascular risk: combined post hoc analysis of the SUSTAIN and PIONEER trials. Cardiovasc Diabetol 2020; 19: 156
  • 292 Nauck MA, Quast DR. Cardiovascular Safety and Benefits of Semaglutide in Patients With Type 2 Diabetes: Findings From SUSTAIN 6 and PIONEER 6. Front Endocrinol (Lausanne) 2021; 12: 645566
  • 293 Zheng SL, Roddick AJ, Aghar-Jaffar R. et al. Association between use of sodium-glucose cotransporter 2 inhibitors, glucagonlike peptide 1 agonists, and dipeptidyl peptidase 4 inhibitors with allcause mortality in patients with type 2 diabetes. A systematic review and meta-analysis. JAMA 2018; 319: 1580-1591
  • 294 Dicembrini I, Nreu B, Scatena A. et al. Microvascular effects of glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized controlled trials. Acta Diabetol 2017; 54: 933-941
  • 295 Mann JFE, Hansen T, Idorn T. et al. Effects of once-weekly subcutaneous semaglutide on kidney function and safety in patients with type 2 diabetes: a post-hoc analysis of the SUSTAIN 1-7 randomised controlled trials. Lancet Diabetes Endocrinol 2020; 8: 880-893
  • 296 Hammerman A, Moore CM, Aboalhasan E. Usefulness of Empagliflozin Versus Oral Semaglutide for Prevention of Cardiovascular Mortality in Patients With Type 2 Diabetes Mellitus. Am J Cardiol 2022; 170: 128-131
  • 297 Li A, Su X, Hu S, Wang Y. Efficacy and safety of oral semaglutide in type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res Clin Pract 2023; 198: 110605
  • 298 Strain WD, Frenkel O, James MA. et al. Effects of Semaglutide on Stroke Subtypes in Type 2 Diabetes: Post Hoc Analysis of the Randomized SUSTAIN 6 and PIONEER 6. Stroke 2022; 53: 2749-2757
  • 299 Banerjee M, Pal R, Mukhopadhyay S. et al. GLP-1 Receptor Agonists and Risk of Adverse Cerebrovascular Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Clin Endocrinol Metab 2023; 108: 1806-1812
  • 300 Home PD, Ahrén B, Reusch JEB. et al. Three-year data from 5 HARMONY phase 3 clinical trials of albiglutide in type 2 diabetes mellitus: Longterm efficacy with or without rescue therapy. Diabetes Res Clin Pract 2017; 131: 49-60
  • 301 Ahrén B, Carr MC, Murphy K. et al. Albiglutide for the treatment of type 2 diabetes mellitus: An integrated safety analysis of the HARMONY phase 3 trials. Diabetes Res Clin Pract 2017; 126: 230-239
  • 302 Hernandez AF, Green JB, Janmohamed S. et al. Harmony outcomes committees and investigators. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomized placebo-controlled trial. Lancet 2018; 392: 1519-1529
  • 303 Rosenstock J, Nino A, Soffer J. et al. Impact of a Weekly Glucagon-Like Peptide 1 Receptor Agonist, Albiglutide, on Glycemic Control and on Reducing Prandial Insulin Use in Type 2 Diabetes Inadequately Controlled on Multiple Insulin Therapy: A Randomized Trial. Diabetes Care 2020; 43: 2509-2518
  • 304 Gerstein HC, Sattar N, Rosenstock J. et al. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N Engl J Med 2021; 385: 896-907
  • 305 Lam CSP, Ramasundarahettige C, Branch KRH. Efpeglenatide and Clinical Outcomes With and Without Concomitant Sodium-Glucose Cotransporter-2 Inhibition Use in Type 2 Diabetes: Exploratory Analysis of the AMPLITUDE-O Trial. Circulation 2022; 145: 565-574
  • 306 Gerstein HC, Li Z, Ramasundarahettige C. et al. Exploring the Relationship Between Efpeglenatide Dose and Cardiovascular Outcomes in Type 2 Diabetes: Insights From the AMPLITUDE-O Trial. Circulation 2023; 147: 1004-1013
  • 307 Coskun T, Sloop KW, Loghin C. et al. LY3298 176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 2018; 18: 3-14
  • 308 Zhao F, Zhou Q, Cong Z. et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun 2022; 13: 1057
  • 309 Frias JP, Nauck MA, Van J. et al. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebocontrolled study to evaluate different dose-escalation regimens. Diabetes Obes Metab 2020; 22: 938-946
  • 310 Nauck MA, Wefers J, Meier JJ. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol 2021; 9: 525-544
  • 311 Rosenstock J, Wysham C, Frías JP. et al. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): a double-blind, randomised, phase 3 trial. Lancet 2021; 398: 143-155
  • 312 Frías JP, Davies MJ, Rosenstock J. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes; SURPASS-2 Investigators. N Engl J Med 2021; 385: 503-515
  • 313 Hartman ML, Sanyal AJ, Loomba R. et al. Effects of Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide on Biomarkers of Nonalcoholic Steatohepatitis in Patients With Type 2 Diabetes. Diabetes Care 2020; 43: 1352-1355
  • 314 Wilson JM, Nikooienejad A, Robins DA. et al. The dual glucosedependent insulinotropic peptide andglucagon-like peptide-1 receptor agonist, tirzepatide, improves lipoprotein biomarkers associated with insulin resistance and cardiovascular risk in patients with type 2 diabetes. Diabetes Obes Metab 2020; 22: 2451-2459
  • 315 Sattar N, McGuire DK, Pavo I. Tirzepatide cardiovascular event risk assessment: a pre-specified meta-analysis. Nat Med 2022; 28: 591-598
  • 316 Karagiannis T, Avgerinos I, Liakos A. et al. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia 2022; 17: 1-11
  • 317 Dutta D, Surana V, Singla R. et al. Efficacy and safety of novel twincretin tirzepatide a dual GIP and GLP-1 receptor agonist in the management of type-2 diabetes: A Cochrane meta-analysis. Indian J Endocrinol Metab 2021; 25: 475-489
  • 318 Rodriguez-Valadez JM, Tahsin M, Fleischmann KE. et al. Cardiovascular and Renal Benefits of Novel Diabetes Drugs by Baseline Cardiovascular Risk: A Systematic Review, Meta-analysis, and Meta-regression. Diabetes Care 2023; 46: 1300-1310
  • 319 Vilsbøll T, Bain SC, Leiter LA. et al. Semaglutide, reduction in glycated haemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab 2018; 20: 889-897
  • 320 Sattar N, Lee MMY, Kristensen S. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of randomised trials. Lancet Diabetes Endocrinol 2021; 9: 653-662
  • 321 Bethel MA, Diaz R, Castellana N. HbA1c Change and Diabetic Retinopathy During GLP-1 Receptor Agonist Cardiovascular Outcome Trials: A Meta-analysis and Meta-regression. Diabetes Care 2021; 44: 290-296
  • 322 Wang F, Mao Y, Wang H. et al. Semaglutide and Diabetic Retinopathy Risk in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Clin Drug Investig 2022; 42: 17-28
  • 323 Gaborit B, Julla JB, Besbes S. et al. Glucagon-like Peptide 1 Receptor Agonists, Diabetic Retinopathy and Angiogenesis: The AngioSafe Type 2 Diabetes Study. J Clin Endocrinol Metab 2020; 105: dgz069
  • 324 Yoshida Y, Joshi P, Barri S. et al. Progression of retinopathy with glucagon-like peptide-1 receptor agonists with cardiovascular benefits in type 2 diabetes – A systematic review and meta-analysis. J Diabetes Complications 2022; 36: 108255
  • 325 Monami M, Nreu B, Scatena A. et al. Safety issues with glucagonlike peptide-1 receptor agonists (pancreatitis, pancreatic cancer and cholelithiasis): Data from randomized controlled trials. Diabetes Obes Metab 2017; 19: 1233-1241
  • 326 Abd El Aziz M, Cahyadi O, Meier JJ. et al. Incretin-based glucoselowering medications and the risk of acute pancreatitis and malignancies: a meta-analysis based on cardiovascular outcomes trials. Diabetes Obes Metab 2020; 22: 699-704
  • 327 Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine 2019; 66: 157-165
  • 328 Azoulay L, Filion KB, Platt RW. et al. Association between incretin-based drugs and the risk of acute pancreatitis. JAMA Intern Med 2016; 176: 1464-1473
  • 329 Wang T, Wang F, Gou Z. et al. Using real-world data to evaluate the association of incretin-based therapies with risk of acute pancreatitis: a meta-analysis of 1,324 515 patients from observational studies. Diabetes Obes Metab 2015; 17: 32-41
  • 330 Ueda P, Wintzell V, Melbye M. et al. Use of incretin-based drugs and risk of cholangiocarcinoma: Scandinavian cohort study. Diabetologia 2021; 64: 2204-2214
  • 331 Piccoli GF, Mesquita LA, Stein C. et al. Do GLP-1 Receptor Agonists Increase the Risk of Breast Cancer? A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2021; 106: 912-921
  • 332 Hidayat K, Zhou YY, Du HZ. et al. A systematic review and metaanalysis of observational studies of the association between the use of incretin-based therapies and the risk of pancreatic cancer. Pharmacoepidemiol Drug Saf 2023; 32: 107-125
  • 333 Newsome PN, Buchholtz K, Cusi K. et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med 2021; 384: 1113-1124
  • 334 Gastaldelli A, Cusi K, Fernández Landó L. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): a substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol 2022; 10: 393-406
  • 335 Roeb E, Canbay A, Bantel H. et al. Aktualisierte S2k-Leitlinie nicht-alkoholische Fettlebererkrankung der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS). April 2022 – AWMF-Registernummer 021-025
  • 336 Mantsiou C, Karagiannis T, Kakotrichi P. et al. Glucagon-like peptide-1 receptor agonists and sodium-glucose co-transporter-2 inhibitors as combination therapy for type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab 2020; 22: 1857-1868
  • 337 Wright AK, Carr MJ, Kontopantelis E. Primary Prevention of Cardiovascular and Heart Failure Events With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Their Combination in Type 2 Diabetes. Diabetes Care 2022; 45: 909-918
  • 338 Russell-Jones D, Pouwer F, Khunti K. Identification of barriers to insulin therapy and approaches to overcoming them. Diabetes Obes Metab 2018; 20: 488-496
  • 339 Landgraf R, Aberle J. Hundert Jahre – Insulin bleibt aktuell und notwendig. Diabetologie 2021; 16: 1-13
  • 340 Retnakaran R, Zinman B. The ongoing evolution of basal insulin therapy over 100 years and its promise for the future. Diabetes Obes Metab 2022; 24: 17-26
  • 341 Bolli GB, Porcellati F, Lucidi P. et al. One-hundred years evolution of prandial insulin preparations: From animal pancreas extracts to rapid-acting analogs. Metabolism 2022; 126: 15435
  • 342 Marso SP, McGuire DK, Zinman B. et al. Efficacy and safety of degludec versus glargine in type 2 diabetes. New Engl J Med 2017; 377: 723-732
  • 343 Pieber TR, Marso SP, McGuire DK. et al. DEVOTE 3: temporal relationships between severe hypoglycaemia, cardiovascular outcomes and mortality. Diabetologia 2018; 61: 58-65
  • 344 Lau IT, Lee KF, So WY. et al. Insulin glargine 300 U/mL for basal insulin therapy in type 1 and type 2 diabetes mellitus. Diabetes Metab Syndr Obes 2017; 10: 273-284
  • 345 Ritzel R, Roussel R, Giaccari A. et al. Better glycaemic control and less hypoglycaemia with insulin glargine 300 U/mL vs glargine 100 U/mL: 1-year patient-level meta-analysis of the EDITION clinical studies in people with type 2 diabetes. Diabetes Obes Metab 2018; 20: 541-548
  • 346 Bonadonna RC, Renard E, Cheng A. et al. Switching to insulin glargine 300 U/mL: Is duration of prior basal insulin therapy important?. Diabetes Res Clin Pract 2018; 142: 19-25
  • 347 Blonde L, Bailey T, Sullivan SD. et al. Insulin glargine 300 units/mL for the treatment of individuals with type 2 diabetes in the real world: A review of the DELIVER programme. Diabetes Obes Metab 2021; 23: 1713-1721
  • 348 Linnebjerg H, Lam EC, Seger ME. et al. Comparison of the pharmacokinetics and pharmacodynamics of LY2963 016 insulin glargine and EU and US-approved versions of lantus insulin glargine in healthy subjects: Three randomized euglycemic clamp studies. Diabetes Care 2015; 38: 2226-2233
  • 349 Rosenstock J, Hollander P, Bhargava A. et al. Similar efficacy and safety of LY2963 016 insulin glargine and insulin glargine (Lantus) in patients with type 2 diabetes who were insulin-naïve or previously treated with insulin glargine: a randomized, doubleblind controlled trial (ELEMENT 2 study). Diabetes Obes Metabol 2015; 17: 734-741
  • 350 Yamada T, Kamata R, Ishinohachi K. et al. Biosimilar vs originator insulins: Systematic review and meta-analysis. Diabetes Obes Metab 2018; 20: 1787-1792
  • 351 But A, De Bruin ML, Bazelier MT. et al. Cancer risk among insulin users: comparing analogues with human insulin in the CARING fivecountry cohort study. Diabetologia 2017; 60: 1691-1703
  • 352 Nauck MA, Mirna AEA, Quast DR. Meta-analysis of head-to-head clinical trials comparing incretin-based glucose-lowering medications and basal insulin: An update including recently developed glucagonlike peptide-1 (GLP-1) receptor agonists and the glucose-dependent insulinotropic polypeptide/GLP-1 receptor co-agonist tirzepatide. Diabetes Obes Metab 2023; 25: 1361-1371
  • 353 Nishimura E, Pridal L, Glendorf T. Molecular and pharmacological characterization of insulin icodec: a new basal insulin analog designed for once-weekly dosing. BMJ Open Diabetes Res Care 2021; 9: e002301
  • 354 Rosenstock J, Bajaj HS, Janež A. et al. for the NN1436-4383 Investigators. Once-Weekly Insulin for Type 2 Diabetes without Previous Insulin Treatment. N Engl J Med 2020; 383: 2107-2116
  • 355 Bajaj HS, Bergenstal RM, Christoffersen A. et al. Switching to once-weekly insulin icodec versus once-daily insulin glargine U100 in type 2 diabetes inadequately controlled on daily basal insulin: a phase 2 randomized controlled trial. Diabetes Care 2021; 44: 1586-1594
  • 356 Mathieu C, Ásbjörnsdóttir B, Bajaj HS. et al. Switching to onceweekly insulin icodec versus once-daily insulin glargine U100 in individuals with basal-bolus insulin-treated type 2 diabetes (ONWARDS 4): a phase 3a, randomised, open-label, multicentre, treat-to-target, non-inferiority trial. Lancet 2023; 401: 1929-1940
  • 357 Ribeiro E, Silva R, de Miranda Gauza M, Schramm Guisso ME. et al. Once-Weekly Insulin Icodec vs. Once-Daily Insulin Glargine U100 for type 2 diabetes: a systematic review and meta-analysis of phase 2 randomized controlled trials. Arch Endocrinol Metab 2023; 67: e000614
  • 358 Philis-Tsimikas A, Asong M, Franek E. et al. Switching to onceweekly insulin icodec versus once-daily insulin degludec in individuals with basal insulin-treated type 2 diabetes (ONWARDS 2): a phase 3a, randomised, open label, multicentre, treat-to-target trial. Lancet Diabetes Endocrinol 2023; 11: 414-425
  • 359 Maiorino MI, Chiodini P, Bellastella G. et al. Insulin and glucagonlike peptide1 receptor agonist combination therapy in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2017; 40: 614-624
  • 360 Guja C, Frías JP, Somogyi A. et al. Effect of exenatide QW or placebo, both added to titrated insulin glargine, in uncontrolled type 2 diabetes: The DURATION-7 randomized study. Diabetes Obes Metab 2018; 20: 1602-1161
  • 361 Rodbard HW, Lingvay I, Reed J. et al. Semaglutide added to basal insulin in type 2 diabetes (SUSTAIN 5): A randomized, controlled trial. J Clin Endocrinol Metab 2018; 103: 2291-2301
  • 362 Huthmacher JA, Meier JJ, Nauck MA. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Metaanalysis. Diabetes Care 2020; 43: 2303-2312
  • 363 Rosenstock J, Emral R, Sauque-Reyna L. et al for the SOLIMIx Trial investigators. Advancing Therapy in Suboptimally Controlled Basal Insulin-Treated Type 2 Diabetes: Clinical Outcomes With iGlarLixi Versus Premix BIAsp 30 in the SoliMix Randomized Controlled Trial. Diabetes Care 2021; 44: 2361-2370
  • 364 Gentile S, Fusco A, Colarusso S. et al. A randomized, openlabel, comparative, crossover trial on preference, efficacy, and safety profiles of lispro insulin U-100 versus concentrated lispro insulin U-200 in patients with type 2 diabetes mellitus: a possible contribution to greater treatment adherence. Expert Opin Drug Saf 2018; 17: 445-450
  • 365 Heise T, Hövelmann U, Brøndsted L. et al. Faster-acting insulin aspart: earlier onset of appearance and greater early pharmacokinetic and pharmacodynamic effects than insulin aspart. Diabetes Obes Metab 2015; 17: 682-688
  • 366 Bowering K, Case C, Harvey J. et al. Faster aspart versus insulin aspart as part of a basal-bolus regimen in inadequately controlled type 2 diabetes: The ONSET 2 trial. Diabetes Care 2017; 40: 951-957
  • 367 Heise T, Piras de Oliveira C, Juneja R. et al. What is the value of faster acting prandial insulin? Focus on ultra-rapid lispro. Diabetes Obes Metab 2022; 24: 1689-1701
  • 368 Leohr J, Kazda C, Liu R. et al. Ultra-rapid lispro shows faster pharmacokinetics and reduces postprandial glucose excursions versus Humalog in patients with type 2 diabetes mellitus in a randomized, controlled crossover meal test early phase study. Diabetes Obes Metab 2022; 24: 187-195
  • 369 Nationale VersorgungsLeitlinie Therapie des Typ-2-Diabetes – Langfassung, 1. Auflage. Version 4. 2013, zuletzt geändert: November 2014