Synlett 2024; 35(02): 225-229
DOI: 10.1055/a-2166-0400
letter

Sulfonated Graphene as a Sustainable Catalyst for Environmentally Benign Preparation of Benzylidene Acetals of Carbohydrates

Padmashri Rabha
,
Anjali Sharma
,
Rajib Panchadhayee


Abstract

A clean and efficient method has been developed for the introduction of benzylidene acetals into carbohydrate derivatives catalyzed by sulfonated graphene at room temperature. Yields were excellent in each case. The catalyst can be reused several times without much decrease in reactivity.

Supporting Information



Publikationsverlauf

Eingereicht: 09. Mai 2023

Angenommen nach Revision: 04. September 2023

Accepted Manuscript online:
04. September 2023

Artikel online veröffentlicht:
11. Oktober 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Ganesh KN, Zhang D, Miller SJ, Rossen K, Chirik PJ, Kozlowski MC, Zimmerman JB, Brooks BW, Savage PE, Allen DT, Voutchkova-Kostal AM. Environ. Sci. Technol. Lett. 2021; 8: 487
    • 2a Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Demchenko AV. Wiley-VCH; Weinheim: 2008
    • 2b Carbohydrates in Chemistry and Biology, Vol. 1. Ernst B, Hart GW, Sinay P. Wiley-VCH; Weinheim: 2000
    • 2c The Organic Chemistry of Sugars . Levy DE, Fügedi P. CRC Press; Boca Raton: 2006
    • 2d Carbohydrates: Best Synthetic Methods . Osborn HM. I. Academic Press; Amsterdam: 2003
    • 2e Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 1. Kováč P. CRC Press; Boca Raton: 2011
    • 3a Guo J, Ye X.-S. Molecules 2010; 15: 7235
    • 3b Boltje TJ, Li C, Boons G.-J. Org. Lett. 2010; 12: 4636
    • 3c Codée JD. C, Ali A, Overkleeft HS, van der Marel GA. C. R. Chim. 2011; 14: 178
    • 4a de Belder AN. Adv. Carbohydr. Chem. Biochem. 1965; 20: 219
    • 4b Preparative Carbohydrate Chemistry . Hanessian S. Marcel Dekker; New York: 1997: 53
    • 4c Protective Groups in Organic Synthesis, 3rd ed. Greene TW, Wuts PG. M. Wiley; New York: 1999
    • 5a Hann RM, Richtmyer NK, Diehl HW, Hudson CS. J. Am. Chem. Soc. 1950; 72: 561
    • 5b Bieg T, Szeja W. Carbohydr. Res. 1985; 140: C7
    • 5c Santra A, Ghosh T, Misra AK. Beilstein J. Org. Chem. 2013; 9: 74
    • 6a Garegg PJ. In Preparative Carbohydrate Chemistry . Hanessian S. Marcel Dekker; New York: 1997: 53
    • 6b Garegg PJ, Hultberg H, Wallin S. Carbohydr. Res. 1982; 108: 97
    • 6c Garegg PJ. Pure Appl. Chem. 1984; 56: 845
    • 6d DeNinno MP, Etienne JB, Duplantier KC. Tetrahedron Lett. 1995; 36: 669
    • 6e Debenham SD, Toone EJ. Tetrahedron: Asymmetry 2000; 11: 385
    • 6f Bhattacharyya SS, Gorin PA. J. Can. J. Chem. 1969; 47: 1195
    • 6g Tanaka N, Ogawa I, Yoshigase S, Nokami J. Carbohydr. Res. 2008; 343: 2675
    • 6h Daragics K, Fügedi P. Tetrahedron Lett. 2009; 50: 2914
    • 6i Jiang L, Chan T.-H. Tetrahedron Lett. 1998; 39: 355
    • 7a Tani S, Sawadi S, Kojima M, Akai S, Sato K.-i. Tetrahedron Lett. 2007; 48: 3103
    • 7b Wang C.-C, Luo S.-Y, Shie C.-R, Hung S.-C. Org. Lett. 2002; 4: 847
    • 7c Shie C.-R, Tzeng Z.-H, Kulkarni SS, Uang B.-J, Hsu C.-Y, Hung S.-C. Angew. Chem. Int. Ed. 2005; 44: 1665
    • 7d Oikawa M, Liu W.-C, Nakai Y, Koshida S, Fukase K, Kusumoto S. Synlett 1996; 1179
    • 8a Panchadhayee R, Misra AK. Synlett 2010; 1193
    • 8b Fletcher HG. Methods Carbohydr. Chem 1963; 2: 307
    • 8c Evans ME. Carbohydr. Res. 1972; 21: 473
  • 9 Tatina M, Yousuf SK, Mukherjee D. Org. Biomol. Chem. 2012; 10: 5357
    • 10a Boulineau FP, Wei A. Carbohydr. Res. 2001; 334: 271
    • 10b Mukhopadhyay B. Tetrahedron Lett. 2006; 47: 4337
    • 10c Niu Y, Wang N, Cao X, Ye X.-S. Synlett 2007; 2116
    • 10d Panchadhayee R, Misra AK. J. Carbohydr. Chem. 2008; 27: 148
    • 10e Garegg PJ, Swahn CG. Acta Chem. Scand. 1972; 26: 3895
    • 11a Hara M. Energy Environ. Sci. 2010; 3: 601
    • 11b Ji J, Zhang G, Chen H, Wang S, Zhang G, Zhang F, Fan X. Chem. Sci. 2011; 2: 484
    • 11c Thombal RS, Jadhav VH. J. Carbohydr. Chem. 2016; 35: 57
    • 12a Ling Y.-C, Garg B. Green Mater. 2013; 1: 47
    • 12b Lonkar SP, Abdala AA. J. Thermodyn. Catal. 2014; 5: 100132 DOI: 10.4172/2157-7544.1000132.
    • 12c Choi W, Lahiri I, Seelaboyina R, Kang YS. Crit. Rev. Solid State Mater. Sci. 2010; 35: 52
  • 13 Oger N, Lin YF, Le Grognec E, Rataboul F, Felpin FX. Green Chem. 2016; 18: 1531
  • 14 Islam DA, Barman K, Jasimuddin S, Acharya H. ChemElectroChem 2017; 4: 3110
  • 15 Benzylidene acetals: General Procedure Benzaldehyde dimethyl acetal (1.1 mmol) and GR-SO3 H (10 mg) were added sequentially to the appropriate substrate (1.0 mmol), and the mixture was stirred for the appropriate time (Table 1) at rt until the reaction was complete (TLC). The mixture was then diluted with CH2Cl2 and filtered to remove the solid catalyst. The organic layer was dried (Na2SO4) and concentrated to give a crude product that was crystallized from EtOH or CH2Cl2–hexane or purified by chromatography (silica gel) Methyl 4,6-O-Benzylidene-α-d-glucopyranoside (1a) Prepared by the general procedure from methyl α-d-glucopyranoside (1; 194 mg, 1 mmol) as a white solid; yield: 95%; mp 150 °C. IR (neat): 3442, 2917, 1452, 1374, 1210, 1135, 1057, 1028, 988 cm–1.1H NMR (700 MHz, CDCl3): δ = 7.41–7.27 (m, 5 H, Ar-H), 5.42 (s, 1 H, PhCH), 4.65 (t, J = 3.5, 3.5, 1 H, H-2), 4.19 (d, J = 5.6 Hz, 1 H, H-1), 3.82 (dd, J = 2.1, 2.8 Hz, 1 H, H-3), 3.70–3.63 (m, 2 H, H-6ab), 3.50 (t, J = 4.2, 4.2 Hz, 1 H, H-4), 3.38–3.35 (m, 1 H, H-5), 3.34 (s, 3 H, OCH3). 13C NMR (175 MH, CDCl3): δ = 137.0–126.3 (6 C, Ar-C), 101.9 (1 C, PhCH), 99.8 (1 C, C-1), 80.9 (1 C, C-4), 72.7 (1 C, C-2), 71.4 (1 C, C-3), 68.9 (1 C, C-6), 62.3 (1 C, C-5), 55.5 (1 C, OCH3). ESI MS (m/z): 305 [M + Na]+. Anal. Calcd for C14H18O6: C, 59.57; H, 6.43. Found: 59.59; H, 6.47.
  • 16 Nakano T, Ito Y, Ogawa T. Carbohydr. Res. 1993; 243: 43
  • 17 Reddy NR, Kumar R, Baskaran S. Eur. J. Org. Chem. 2019; 1548