Subscribe to RSS
DOI: 10.1055/a-2151-5175
Delayed Reconstruction of the Perforator Pedicle Propeller Flap after the Induced Membrane Technique for Gustilo IIIB Open Distal Tibial Fracture
Verzögerte Rekonstruktion des Perforator-Pedikel-Propellerlappens nach der induzierten Membrantechnik bei offener distaler Tibiafraktur von Gustilo IIIB Supported by: Hefei Municipal Natural Science Foundation 2021010Supported by: Natural Science Foundation of Anhui Province Universities KJ2020A0182
Supported by: Clinical Research Cultivation Project of the Second Affiliated Hospital of Anhui Medical University 2020LCYB07
Supported by: Research Found of Anhui Institute of Translational Medicine 2022zhyx-C55
Abstract
Objective
This study aimed to evaluate the safety and efficacy of delayed reconstruction of the perforator pedicle propeller flap after the induced membrane technique in the treatment of Gustilo IIIB open distal tibial fracture, and to evaluate the clinical outcome and complications of two different perforator pedicle propeller flaps.
Methods
Thirty-four patients with Gustilo IIIB open distal tibial fractures treated by the induced membrane technique and delayed reconstruction of two different perforator pedicle propeller flaps from May 2017 to March 2022 were retrospectively analyzed. Patients were divided into two groups according to the different kinds of perforator pedicle propeller flaps covered. The operation required two stages. The Radiographic Union Score for Tibial fractures (RUST) was used to evaluate the healing of the tibial bone defect. The American Orthopaedic Foot and Ankle Society (AOFAS) score was used to evaluate ankle function. The complications associated with the technique were recorded.
Results
The number of serial debridements, excluding those performed during emergency and final operations, was a mean of 2.28 ± 0.83 in the PAPF group. The PAPF group had a mean bone defect length of 6.76 ± 0.69 cm, the median healing time of 13.11 ± 0.96 months, RUST score 12.68 ± 1.63, and AOFAS score of 84.12 ± 6.38. On the other hand the PTAPF group’s mean bone defect length was 6.73 ± 0.95 cm, the median healing time 12.63 ± 1.46 months, RUST score 13.73 ± 1.53 and AOFAS score 82.79 ± 5.49. There were no observed significant differences the two groups in the number of serial debridements, bone defect length, bone union time, RUST score, or AOFAS score (p > 0.05). Flap size ranged from 9 × 6 cm2 to 14 × 7 cm2 in the PAPF group and from 9 × 6 cm2 to 13 × 7 cm2 in the PTAPF group. There were no severe complications such as flap-related complications or amputation. The differences in complications in the two groups were not statistically significant.
Conclusion
In cases of severe open tibial fracture, the reconstructive method is important. When delayed reconstruction is inevitable, surgeons should first perform radical debridement, followed by vacuum sealing drainage as a bridging therapy; both PAPF and PTAPF can be considered for definitive soft tissue coverage.
Zusammenfassung
Ziele
Ziel dieser Studie war es, die Sicherheit und Wirksamkeit der verzögerten Rekonstruktion des Perforator-Pedikel-Propellerlappens nach der induzierten Membrantechnik bei der Behandlung der offenen distalen Tibiafraktur von Gustilo IIIB zu untersuchen. Des Weiteren wurden die klinischen Ergebnisse sowie die Komplikationen von 2 verschiedenen Perforator-Pedikel-Propellerklappen bewertet.
Methoden
Bei der Studie handelt es sich um eine retrospektive Analyse von 34 Patienten mit offenen distalen Tibiafrakturen nach Gustilo IIIB. Die Patienten wurden von Mai 2017 bis März 2022 mit der induzierten Membrantechnik und der verzögerten Rekonstruktion von 2 verschiedenen Perforator-Pedikel-Propellerklappen behandelt. Die Patienten wurden in 2 Gruppen eingeteilt, je nachdem, welche Art von Perforator-Pedikel-Propellerklappen für die Behandlung verwendet wurde. Die Operation umfasste 2 Phasen. 1. Stufe: Der Radiographic Union Score für Tibiafrakturen (RUST) wurde verwendet, um die Heilung des Tibiaknochendefekts zu beurteilen. 2. Stufe: Der Score der American Orthopaedic Foot and Ankle Society (AOFAS) wurde verwendet, um die Knöchelfunktion zu bewerten. Die mit der Technik verbundenen Komplikationen wurden entsprechend erfasst.
Ergebnisse
Die Anzahl der seriellen Debridements, mit Ausnahme derjenigen, die während der Notfall- und Abschlussoperationen durchgeführt wurden, betrug in der PAPF-Gruppe durchschnittlich 2,28 ± 0,83 und in der PTAPF-Gruppe 2,19 ± 0,83. Die PAPF-Gruppe hatte eine durchschnittliche Knochendefektlänge von 6,76 ± 0,69 cm, eine mediane Heilungszeit von 13,11 ± 0,96 Monaten, einen RUST-Score von 12,68 ± 1,63 und einen AOFAS-Score von 84,12 ± 6,38. Bei der PTAPF-Gruppe hingegen betrug die durchschnittliche Knochendefektlänge 6,73 ± 0,95 cm, die mediane Heilungszeit 12,63 ± 1,46 Monate, der RUST-Score 13,73 ± 1,53 und der AOFAS-Score 82,79 ± 5,49. Es wurden keine signifikanten Unterschiede zwischen den beiden Gruppen in Bezug auf die Anzahl der seriellen Débridements, die Länge des Knochendefekts, die Knochenaufbauzeit, den RUST-Score oder den AOFAS-Score beobachtet (p > 0,05). Die Klappengröße reichte von 9 × 6 cm2 bis 14 × 7 cm2 in der PAPF-Gruppe und von 9 × 6 cm2 bis 13 × 7 cm2 in der PTAPF-Gruppe. Es traten keine schwerwiegenden Komplikationen wie Lappenkomplikationen oder Amputationen auf. Die Unterschiede bei den Komplikationen in den beiden Gruppen waren statistisch nicht signifikant.
Schlussfolgerung
Die rekonstruktive Methode spielt bei schweren offenen Tibiafrakturen eine sehr wichtige Rolle. In Fällen, in denen eine verzögerte Rekonstruktion unumgänglich ist, sollte der Chirurg zunächst ein radikales Débridement durchführen, gefolgt von einer Vakuum-Drainage als Überbrückungstherapie. Schließlich können PAPF und PTAPF für eine definitive Weichteilabdeckung in Betracht gezogen werden.
Keywords
open fracture - bone defect - induced membrane - flap transplantation - vacuum sealing drainageSchlüsselwörter
offene Fraktur - Knochendefekt - induzierte Membran - Lappentransplantation - Vakuum-DrainagePublication History
Received: 19 March 2023
Accepted after revision: 01 August 2023
Article published online:
22 September 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Singer BR, McLauchlan GJ, Robinson CM. et al. Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Joint Surg Br 1998; 80: 243-248
- 2 Court-Brown CM, Caesar B. Epidemiology of adult fractures: A review. Injury 2006; 37: 691-697
- 3 Sohn OJ, Kang DH. Staged protocol in treatment of open distal tibia fracture: using lateral MIPO. Clin Orthop Surg 2011; 3: 69-76
- 4 Park J, Yang KH. Treatment of an open distal tibia fracture with segmental bone loss in combination with a closed proximal tibia fracture: a case report. Arch Orthop Trauma Surg 2012; 132: 1121-1124
- 5 Keating JF, Simpson AH, Robinson CM. The management of fractures with bone loss. J Bone Joint Surg Br 2005; 87: 142-150
- 6 Mundy LR, Truong T, Shammas RL. et al. Acute treatment patterns for lower extremity trauma in the United States: flaps versus amputation. J Reconstr Microsurg 2017; 33: 563-570
- 7 British Orthopaedic Association Trauma Committee. British Orthopaedic Association Standard for Trauma (BOAST): Early Management of Paediatric Forearm Fracture. Injury 2021; 52: 2052
- 8 Aktuglu K, Günay H, Alakbarov J. Monofocal bone transport technique for bone defects greater than 5 cm in tibia: our experience in a case series of 24 patients. Injury 2016; 47 (06) S40-S46
- 9 Mauffrey C, Barlow BT, Smith W. Management of segmental bone defects. J Am Acad Orthop Surg 2015; 23: 143-153
- 10 Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010; 41: 27-37
- 11 Pereira R, Perry WC, Crisologo PA. et al. Membrane-Induced Technique for the Management of Combined Soft Tissue and Osseous Defects. Clin Podiatr Med Surg 2021; 38: 99-110
- 12 Moteki T, Yanagawa T, Saito K. Autograft treated with liquid nitrogen combined with the modified Masquelet technique for bone defect after resection of malignant bone tumors: Two case reports. J Orthop Sci 2019; 24: 573-577
- 13 Toyama T, Hamada Y, Horii E. et al. Finger Rescue Using the Induced Membrane Technique for Osteomyelitis of the Hand. J Hand Surg Asian Pac Vol 2021; 26: 235-239
- 14 Wang X, Luo F, Huang K. et al. Induced membrane technique for the treatment of bone defects due to post-traumatic osteomyelitis. Bone Joint Res 2016; 5: 101-105
- 15 Haddad B, Zribi S, Haraux E. et al. Induced membrane technique for clavicle reconstruction in paediatric patients: Report of four cases. Orthop Traumatol Surg Res 2019; 105: 733-737
- 16 Wang P, Wu Y, Rui Y. et al. Masquelet technique for reconstructing bone defects in open lower limb fracture: Analysis of the relationship between bone defect and bone graft. Injury 2021; 52: 988-995
- 17 Kang Y, Wu Y, Ma Y. et al. "Primary free-flap tibial open fracture reconstruction with the Masquelet technique" and internal fixation. Injury 2020; 51: 2970-2974
- 18 Whelan DB, Bhandari M, Stephen D. et al. Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 2010; 68: 629-632
- 19 Gopal S, Giannoudis PV, Murray A. et al. The functional outcome of severe, open tibial fractures managed with early fixation and flap coverage. J Bone Joint Surg Br 2004; 86: 861-867
- 20 Godina M. Early microsurgical reconstruction of complex trauma of the extremities. Plast Reconstr Surg 1986; 78: 285-292
- 21 Gopal S, Majumder S, Batchelor AG. et al. Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br 2000; 82: 959-966
- 22 Hou Z, Irgit K, Strohecker KA. et al. Delayed flap reconstruction with vacuum-assisted closure management of the open IIIB tibial fracture. J Trauma 2011; 71: 1705-1708
- 23 Patterson CW, Stalder MW, Richardson W. et al. Timing of Free Flaps for Traumatic Wounds of the Lower Extremity: Have Advances in Perioperative Care Changed the Treatment Algorithm?. J Reconstr Microsurg 2019; 35: 616-621
- 24 Charalambous CP, Siddique I, Zenios M. et al. Early versus delayed surgical treatment of open tibial fractures: effect on the rates of infection and need of secondary surgical procedures to promote bone union. Injury 2005; 36: 656-661
- 25 Francel TJ, Vander Kolk CA, Hoopes JE. et al. Microvascular soft-tissue transplantation for reconstruction of acute open tibial fractures: timing of coverage and long-term functional results. Plast Reconstr Surg 1992; 89: 478-487
- 26 Ulusal AE, Lin CH, Lin YT. et al. The use of free flaps in the management of type IIIB open calcaneal fractures. Plast Reconstr Surg 2008; 121: 2010-2019
- 27 Vathulya M, Dhingra M, Nongdamba H. et al. Evaluation of pedicled flaps for type IIIB open fractures of the tibia at a tertiary care center. Arch Plast Surg 2021; 48: 417-426
- 28 Ahn DK, Lew DH, Roh TS. et al. Reconstruction of Ankle and Heel Defects with Peroneal Artery Perforator-Based Pedicled Flaps. Arch Plast Surg 2015; 42: 619-625
- 29 Mooney JF, Argenta LC, Marks MW. et al. Treatment of soft tissue defects in pediatric patients using the V.A.C system. Clin Orthop Relat Res 2000; 376: 26-31
- 30 Abulaiti A, Yilihamu Y, Yasheng T. et al. The psychological impact of external fixation using the Ilizarov or Orthofix LRS method to treat tibial osteomyelitis with a bone defect. Injury 2017; 48: 2842-2846
- 31 El-Gammal TA, Shiha AE, El-Deen MA. et al. Management of traumatic tibial defects using free vascularized fibula or Ilizarov bone transport: a comparative study. Microsurgery 2008; 28: 339-346
- 32 Giannoudis PV, Harwood PJ. et al. Restoration of long bone defects treated with the induced membrane technique: protocol and outcomes. Injury 2016; 47 (06) S53-S61
- 33 Karger C, Kishi T, Schneider L. et al. French Society of Orthopaedic Surgery and Traumatology (SoFCOT). Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 2012; 98: 97-102
- 34 Taylor BC, Hancock J, Zitzke R. et al. Treatment of Bone Loss With the Induced Membrane Technique: Techniques and Outcomes. J Orthop Trauma 2015; 29: 554-557
- 35 Hwang KT, Kim SW, Sung IH. et al. Is delayed reconstruction using the latissimus dorsi free flap a worthy option in the management of open IIIB tibial fractures?. Microsurgery 2016; 36: 453-459