Synthesis 2024; 56(02): 229-238
DOI: 10.1055/a-2134-0450
short review

Advances in Nickel-Catalyzed O-Arylation of Aliphatic Alcohols and Phenols with (Hetero)aryl Electrophiles

Kathleen M. Morrison
,
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Discovery Grant award RGPIN-2019-04288. Dalhousie University is also gratefully acknowledged for supporting this work. K.M.M. acknowledges receipt of an NSERC Postgraduate Scholarship as well as Nova Scotia Graduate and Killam Scholarships.


Abstract

Transition-metal catalysis has been consequential in enabling carbon–heteroatom bond-forming reactions. Recent breakthroughs in Ni-catalyzed cross-couplings have offered competitive and, in some cases, superior reactivity to Pd- or Cu-based processes. Amidst the ongoing renaissance in this field, the Ni-catalyzed C–O cross-coupling of alcohols and (hetero)aryl (pseudo)halides has surfaced as an effective strategy for the synthesis of (hetero)aryl ethers. Methodologies to achieve such transformations tend to rely on one of three catalytic approaches: (i) thermal conditions often accompanied by ancillary ligand design tailored for Ni catalysis; (ii) the synergistic combination of photoredox and Ni catalysis; or (iii) electrochemically driven Ni catalysis. In some instances, these protocols have provided access to expanded C–O cross-coupling substrate scope, including the use of inexpensive and abundant electrophile coupling partners (e.g., (hetero)aryl chlorides). This Short Review aims to summarize recent progress in the development of Ni-catalyzed O-arylations of primary, secondary, and tertiary aliphatic alcohols, as well as phenols, with (hetero)aryl electrophiles.

1 Introduction

2 Thermally Promoted Ni C–O Cross-Coupling

2.1 Primary and Secondary Aliphatic Alcohols

2.2 Tertiary Aliphatic Alcohols

2.3 Phenols

3 Photochemically Promoted Ni C–O Cross-Coupling

3.1 Primary and Secondary Aliphatic Alcohols

3.2 Phenols

4 Electrochemically Promoted Ni C–O Cross-Coupling

4.1 Primary and Secondary Aliphatic Alcohols

5 Conclusions and Outlook



Publikationsverlauf

Eingereicht: 16. Juni 2023

Angenommen nach Revision: 20. Juli 2023

Accepted Manuscript online:
20. Juli 2023

Artikel online veröffentlicht:
05. September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a McGrath NA, Brichacek M, Njardarson JT. J. Chem. Educ. 2010; 87: 1348
    • 1b Welsch ME, Snyder SA, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347
    • 1c Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
    • 1d Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Adv. Synth. Catal. 2011; 353: 1825
    • 1e Scott KA, Cox PB, Njardarson JT. J. Med. Chem. 2022; 65: 7044
  • 2 Fuhrmann E, Talbiersky J. Org. Process Res. Dev. 2005; 9: 206
  • 3 Fletcher S. Org. Chem. Front. 2015; 2: 739
    • 4a Rodriguez JR, Agejas J, Bueno AB. Tetrahedron Lett. 2006; 47: 5661
    • 4b Henderson AS, Medina S, Bower JF, Galan MC. Org. Lett. 2015; 17: 4846
  • 5 Zhang R, Song C.-Y, Sui Z, Yuan Y, Gu Y.-C, Chen C. Chem. Rec. 2023; 23: e202300020
    • 6a Enthaler S, Company A. Chem. Soc. Rev. 2011; 40: 4912
    • 6b Stambuli JP. Transition Metal-Catalyzed Formation of C–O and C–S Bonds. In New Trends in Cross-Coupling: Theory and Application. Colacot TJ. Royal Society of Chemistry; Cambridge: 2014: 254
    • 6c Krishnan KK, Ujwaldev SM, Sindhu KS, Anilkumar G. Tetrahedron 2016; 72: 7393
    • 6d Bhunia S, Pawar GG, Kumar SV, Jiang YW, Ma DW. Angew. Chem. Int. Ed. 2017; 56: 16136
    • 6e Evano G, Wang JJ, Nitelet A. Org. Chem. Front. 2017; 4: 2480
    • 6f Amal Joseph PJ, Priyadarshini S. Org. Process Res. Dev. 2017; 21: 1889
    • 7a Young IS, Simmons EM, Fenster MD. B, Zhu JJ, Katipally KR. Org. Process Res. Dev. 2018; 22: 585
    • 7b Hager A, Guimond N, Grunenberg L, Hanisch C, Steiger S, Preuss A. Org. Process Res. Dev. 2021; 25: 654
    • 7c Yang Q, Zhao Y, Ma D. Org. Process Res. Dev. 2022; 26: 1690
    • 8a Shafir A, Lichtor PA, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 3490
    • 8b Wu XX, Fors BP, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9943
    • 8c Gowrisankar S, Sergeev AG, Anbarasan P, Spannenberg A, Neumann H, Beller M. J. Am. Chem. Soc. 2010; 132: 11592
    • 8d Maligres PE, Li J, Krska SW, Schreier JD, Raheem IT. Angew. Chem. Int. Ed. 2012; 51: 9071
    • 8e Zhang H, Ruiz-Castillo P, Buchwald SL. Org. Lett. 2018; 20: 1580
    • 8f Chen Z, Jiang Y, Zhang L, Guo Y, Ma D. J. Am. Chem. Soc. 2019; 141: 3541
    • 8g Zhang H, Ruiz-Castillo P, Schuppe AW, Buchwald SL. Org. Lett. 2020; 22: 5369
    • 8h Ray R, Hartwig JF. Angew. Chem. Int. Ed. 2021; 60: 8203
  • 9 Huang LB, Ackerman LK. G, Kang K, Parsons AM, Weix DJ. J. Am. Chem. Soc. 2019; 141: 10978
    • 10a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 10b Diccianni JB, Diao TN. Trends Chem. 2019; 1: 830
    • 10c Chernyshev VM, Ananikov VP. ACS Catal. 2022; 12: 1180
  • 11 Grushin VV, Alper H. Chem. Rev. 1994; 94: 1047
  • 12 For a review related to the use of bisphosphine ligands in thermally promoted nickel-catalyzed C–N cross-coupling, see: Lavoie CM, Stradiotto M. ACS Catal. 2018; 8: 7228
    • 13a Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 13b Zhu C, Yue H, Jia J, Rueping M. Angew. Chem. Int. Ed. 2021; 60: 17810
    • 13c Zhu S, Li H, Li Y, Huang Z, Chu L. Org. Chem. Front. 2023; 10: 548
  • 14 Cohen B, Lehnherr D, Sezen-Edmonds M, Forstater JH, Frederick MO, Deng L, Ferretti AC, Harper K, Diwan M. Chem. Eng. Res. Des. 2023; 192: 622
  • 15 Mann G, Hartwig JF. J. Org. Chem. 1997; 62: 5413
  • 16 Lavoie CM, MacQueen PM, Rotta-Loria NL, Sawatzky RS, Borzenko A, Chisholm AJ, Hargreaves BK. V, McDonald R, Ferguson MJ, Stradiotto M. Nat. Commun. 2016; 7: 11073
  • 17 Stradiotto M, Lundgren RJ. Ligand Design in Metal Chemistry: Reactivity and Catalysis . John Wiley & Sons; Chichester: 2016
  • 18 Han SJ, Doi R, Stoltz BM. Angew. Chem. Int. Ed. 2016; 55: 7437
  • 19 MacQueen PM, Tassone JP, Diaz C, Stradiotto M. J. Am. Chem. Soc. 2018; 140: 5023
  • 20 Terrett JA, Cuthbertson JD, Shurtleff VW, MacMillan DW. C. Nature 2015; 524: 330
  • 21 Tassone JP, MacQueen PM, Lavoie CM, Ferguson MJ, McDonald R, Stradiotto M. ACS Catal. 2017; 7: 6048
  • 22 Pringle PG, Smith MB. Phosphatrioxaadamantane Ligands . In Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis . Kamer PC. J, van Leeuwen PW. N. M. John Wiley & Sons; Chichester: 2012: 391
    • 23a Lavoie CM, MacQueen PM, Stradiotto M. Chem. Eur. J. 2016; 22: 18752
    • 23b Lavoie CM, McDonald R, Johnson ER, Stradiotto M. Adv. Synth. Catal. 2017; 359: 2972
    • 23c Lavoie CM, Tassone JP, Ferguson MJ, Zhou Y, Johnson ER, Stradiotto M. Organometallics 2018; 37: 4015
    • 23d Clark JS. K, Ferguson MJ, McDonald R, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 6391
    • 23e Clark JS. K, McGuire RT, Lavoie CM, Ferguson MJ, Stradiotto M. Organometallics 2019; 38: 167
    • 23f McGuire RT, Paffile JF. J, Zhou YQ, Stradiotto M. ACS Catal. 2019; 9: 9292
    • 23g Tassone JP, England EV, MacQueen PM, Ferguson MJ, Stradiotto M. Angew. Chem. Int. Ed. 2019; 58: 2485
    • 23h McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Angew. Chem. Int. Ed. 2020; 59: 8952
    • 23i Lundrigan T, Tassone JP, Stradiotto M. Synlett 2021; 32: 1665
    • 23j McGuire RT, Yadav AA, Stradiotto M. Angew. Chem. Int. Ed. 2021; 60: 4080
    • 23k Martinek N, Morrison KM, Field JM, Fisher SA, Stradiotto M. Chem. Eur. J. 2023; 29: e202203394
  • 24 Morrison KM, Yeung CS, Stradiotto M. Angew. Chem. Int. Ed. 2023; 62: e202300686
  • 25 Ahanthem D, Laitonjam WS. Asian J. Org. Chem. 2017; 6: 1492
  • 26 Hashimoto T, Shiota K, Funatsu K, Yamaguchi Y. Adv. Synth. Catal. 2021; 363: 1625
  • 27 Morrison KM, McGuire RT, Ferguson MJ, Stradiotto M. ACS Catal. 2021; 11: 10878
    • 28a Wu F, Zhu K, Wu G, Gao Y, Chen H. Eur. J. Org. Chem. 2020; 519
    • 28b Bode NE, McGuire RT, Stradiotto M. Org. Lett. 2022; 24: 8986
  • 29 For application of the PAd2-DalPhos ligand, featuring two CgP donor fragments, in enabling the conceptually related Ni-catalyzed decarbonylation of lactones, see: Luu QH, Li J. Chem. Sci. 2022; 13: 1095
  • 30 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 31a Tian L, Till NA, Kudisch B, MacMillan DW. C, Scholes GD. J. Am. Chem. Soc. 2020; 142: 4555
    • 31b Liu L, Nevado C. Organometallics 2021; 40: 2188
  • 32 Sun R, Qin Y, Ruccolo S, Schnedermann C, Costentin C, Nocera DG. J. Am. Chem. Soc. 2019; 141: 89
  • 33 Chai Z, Zeng T.-T, Li Q, Lu L.-Q, Xiao W.-J, Xu D. J. Am. Chem. Soc. 2016; 138: 10128
  • 34 Liu YY, Liang D, Lu LQ, Xiao WJ. Chem. Commun. 2019; 55: 4853
  • 35 Escobar RA, Johannes JW. Chem. Eur. J. 2020; 26: 5168
  • 36 Chrisman CH, Kudisch M, Puffer KO, Stewart TK, Lamb YM. L, Lim CH, Escobar R, Thordarson P, Johannes JW, Miyake GM. J. Am. Chem. Soc. 2023; 145: 12293
  • 37 Qin YZ, Martindale BC. M, Sun R, Rieth AJ, Nocera DG. Chem. Sci. 2020; 11: 7456
  • 38 Zhao X, Deng C, Meng D, Ji H, Chen C, Song W, Zhao J. ACS Catal. 2020; 10: 15178
  • 39 Vijeta A, Casadevall C, Roy S, Reisner E. Angew. Chem. Int. Ed. 2021; 60: 8494
  • 40 Zu W, Day C, Wei L, Jia X, Xu L. Chem. Commun. 2020; 56: 8273
  • 41 Yang L, Lu HH, Lai CH, Li G, Zhang W, Cao R, Liu FY, Wang C, Xiao JL, Xue D. Angew. Chem. Int. Ed. 2020; 59: 12714
    • 42a Shields BJ, Kudisch B, Scholes GD, Doyle AG. J. Am. Chem. Soc. 2018; 140: 3035
    • 42b Luo H, Wang G, Feng Y, Zheng W, Kong L, Ma Y, Matsunaga S, Lin L. Chem. Eur. J. 2023; 29: e202202385
  • 43 Gandini T, Dolcini L, Di Leo L, Fornara M, Bossi A, Penconi M, Dal Corso A, Gennari C, Pignataro L. ChemCatChem 2022; 14: e202200990
  • 44 Zhu DL, Jiang S, Wu Q, Wang H, Li HY, Li HX. Org. Lett. 2021; 23: 8327
  • 45 Li C, Kawamata Y, Nakamura H, Vantourout JC, Liu ZQ, Hou QL, Bao DH, Starr JT, Chen JS, Yan M, Baran PS. Angew. Chem. Int. Ed. 2017; 56: 13088
  • 46 Zhang HJ, Chen L, Oderinde MS, Edwards JT, Kawamata Y, Baran PS. Angew. Chem. Int. Ed. 2021; 60: 20700
  • 47 Bortnikov EO, Semenov SN. J. Org. Chem. 2021; 86: 782