Subscribe to RSS
DOI: 10.1055/a-2127-1260
Practical Asymmetric Synthesis of Sulfoximines and Sulfimides from Sulfinamides
This work was supported by Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP17H06450, JP26220803, JP18H01975, JP21J23052, JP22H02073, and JP20H04815 in Hybrid Catalysis).
Abstract
Chiral sulfoximines and sulfimides are an interesting class of compounds in various areas. However, methodologies for preparing these chiral sulfur compounds in a stereoselective manner have been underdeveloped. Herein, we briefly summarize our recent studies on asymmetric synthesis of sulfoximines and sulfimides from readily available enantioenriched sulfinamides. In these studies, optically pure sulfoximines and sulfimides having various carbon substituents on their sulfur atom could be obtained.
1 Introduction
2 Asymmetric Synthesis of Chiral Sulfoximines
3 Asymmetric Synthesis of Chiral Sulfimides
4 Conclusion
Key words
asymmetric synthesis - chirality - sulfinamides - sulfoximines - sulfimides - sulfinimidate estersPublication History
Received: 21 June 2023
Accepted after revision: 11 July 2023
Accepted Manuscript online:
11 July 2023
Article published online:
05 September 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Liu N.-W, Liang S, Manolikakes G. Synthesis 2016; 1939
- 1b Nielsen M, Jacobsen CB, Holub N, Paixão MW, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 2668
- 1c Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
- 1d Devendar P, Yang GF. Top. Curr. Chem. 2017; 375: 82
- 2a Wojaczyńska E, Wojaczyński J. Chem. Rev. 2010; 110: 4303
- 2b Wojaczyńska E, Wojaczyński J. Chem. Rev. 2020; 120: 4578
- 2c Kaiser D, Klose I, Oost R, Neuhaus J, Maulide N. Chem. Rev. 2019; 119: 8701
- 2d Trost BM, Rao M. Angew. Chem. Int. Ed. 2015; 54: 5026
- 2e Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
- 3a Lücking U. Angew. Chem. Int. Ed. 2013; 52: 9399
- 3b Zhou S, Jia Z, Xiong L, Yan T, Yang N, Wu G, Song H, Li Z. J. Agric. Food Chem. 2014; 62: 6269
- 4a Frings M, Bolm C, Blum A, Gnamm C. Eur. J. Med. Chem. 2017; 126: 225
- 4b Andresini M, Tota A, Degennaro L, Bull JA, Luisi R. Chem. Eur. J. 2021; 27: 17293
- 5a Kahraman M, Sinishtaj S, Dolan PM, Kensler TW, Peleg S, Saha U, Chuang SS, Bernstein G, Korczak B, Posner GH. J. Med. Chem. 2004; 47: 6854
- 5b Park SJ, Buschmann H, Bolm C. Bioorg. Med. Chem. Lett. 2011; 21: 4888
- 5c Siemeister G, Lücking U, Wengner AM, Lienau P, Steinke W, Schatz C, Mumberg D, Ziegelbauer K. Mol. Cancer Ther. 2012; 11: 2265
- 5d Park SJ, Baars H, Mersmann S, Buschmann H, Baron JM, Amann PM, Czaja K, Hollert H, Bluhm K, Redelstein R, Bolm C. ChemMedChem 2013; 8: 217
- 5e Sparks TC, Watson GB, Loso MR, Geng C, Babcock JM, Thomas JD. Pestic. Biochem. Physiol. 2013; 107: 1
- 5f Lücking U, Jautelat R, Krüger M, Brumby T, Lienau P, Schäfer M, Briem H, Schulze J, Hillisch A, Reichel A, Wengner AM, Siemeister G. ChemMedChem 2013; 8: 1067
- 5g Ayaz P, Andres D, Kwiatkowski DA, Kolbe CC, Lienau P, Siemeister G, Lücking U, Stegmann CM. ACS Chem. Biol. 2016; 11: 1710
- 5h Lücking U, Scholz A, Lienau P, Siemeister G, Kosemund D, Bohlmann R, Briem H, Terebesi I, Meyer K, Prelle K, Denner K, Bömer U, Schäfer M, Eis K, Valencia R, Ince S, von Nussbaum F, Mumberg D, Ziegelbauer K, Klebl B, Choidas A, Nussbaumer P, Baumann M, Schultz-Fademrecht C, Rühter G, Eickhoff J, Brands M. ChemMedChem 2017; 12: 1776
- 6a Takada H, Oda M, Oyamada A, Ohe K, Uemura S. Chirality 2000; 12: 299
- 6b Murakami M, Katsuki T. Tetrahedron Lett. 2002; 43: 3947
- 6c Zhou S, Gu Y, Liu M, Wu C, Zhou S, Zhao Y, Jia Z, Wang B, Xiong L, Yang N, Li Z. J. Agric. Food Chem. 2014; 62: 11054
- 6d Hendriks CM. M, Hartkamp J, Wiezorek S, Steinkamp AD, Rossetti G, Lüscher B, Bolm C. Bioorg. Med. Chem. Lett. 2017; 27: 2659
- 7a Bizet V, Hendriks CM. M, Bolm C. Chem. Soc. Rev. 2015; 44: 3378
- 7b Zhang X, Wang F, Tan C.-H. JACS Au 2023; 3: 700
- 7c Collet F, Dodd RH, Dauban P. Org. Lett. 2008; 10: 5473
- 7d Yoshitake M, Hayashi H, Uchida T. Org. Lett. 2020; 22: 4021
- 7e Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Angew. Chem. Int. Ed. 2021; 60: 7920
- 8a Bach T, Körber C. Eur. J. Org. Chem. 1999; 1033
- 8b Okamura H, Bolm C. Org. Lett. 2004; 6: 1305
- 8c Bull JA, Degennaro L, Luisi R. Synlett 2017; 28: 2525
- 9a Aota Y, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2019; 58: 17661
- 9b Aota Y, Kano T, Maruoka K. J. Am. Chem. Soc. 2019; 141: 19263
- 9c Maeda Y, Hamada S, Aota Y, Otsubo K, Kano T, Maruoka K. J. Org. Chem. 2022; 87: 3652
- 10 Tsuzuki S, Kano T. Angew. Chem. Int. Ed. 2023; 62: e202300637
- 11a Andresini M, Spennacchio M, Romanazzi G, Ciriaco F, Clarkson G, Degennaro L, Luisi R. Org. Lett. 2020; 22: 7129
- 11b Andresini M, Spennacchio M, Colella M, Losito G, Aramini A, Degennaro L, Luisi R. Org. Lett. 2021; 23: 6850
- 12a Backes BJ, Dragoli DR, Ellman JA. J. Org. Chem. 1999; 64: 5472
- 12b Baffoe J, Hoe MY, Touré BB. Org. Lett. 2010; 12: 1532
- 12c Binda PI, Abbina S, Du G. Synthesis 2011; 2609
- 12d Prakash A, Dibakar M, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett. 2011; 52: 5625
- 12e Sun X, Tu X, Dai C, Zhang X, Zhang B, Zeng Q. J. Org. Chem. 2012; 77: 4454
- 12f Liu Y, Wang Z, Guo B, Cai Q. Tetrahedron Lett. 2016; 57: 2379
- 13 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
- 14 Hackenberger CP. R, Raabe G, Bolm C. Chem. Eur. J. 2004; 10: 2942
- 15a Greed S, Symes O, Bull JA. Chem. Commun. 2022; 58: 5387
- 15b Shultz ZP, Scattolin T, Wojtas L, Lopchuk JM. Nat. Synth. 2022; 1: 170
For some selected examples, see:
For some selected examples, see:
For some selected examples, see:
For some selected examples, see: