Subscribe to RSS
DOI: 10.1055/a-2124-4037
Metal-Loaded Semiconductor-Photocatalysis of Alcohols for Selective Organic Synthesis: A Personal Account
This work was supported by MEXT/JSPS Grant-in-aid for Transformative Research Areas (A) Green Catalysis Science, Specially Promoted Research, and International Leading Research, KAKENHI (Grant # 23H04904, 23H05404, and 22K21346 to S.S.), and partially by JST CREST (Grant # JPMJCR22L2 to S.S.), MEXT Grant in aid-for transformative research areas (B): Deuterium Science, KAKENHI (Grant # 20H05740, to H.N.), and JSPS KAKENHI (Grant # 26410115 and 23H01958, to H.N.).
Dedicated to Professor Hisashi Yamamoto on the occasion of his 80th birthday
Abstract
In this account, we review our research over the last decade on metal-loaded semiconductor-photocatalyzed organic transformations using alcohols. Different from many reactions using alcohols as mere sacrificial electron donors, our study has demonstrated alcohols as useful organic building blocks incorporated into value-added products. Besides such recollections of previous results, we briefly introduce our ongoing project involving photocatalytic C–C bond-forming reactions via the C–C bond scission of tertiary alcohols.
1 Introduction
2 Dehydroxylative Hydrogenolysis of Allylic Alcohols
3 Acceptorless Dehydrogenation of Activated/Unactivated Alcohols
4 N-Alkylation of Amines using Alcohols as Alkylating Agents
5 Summary and Outlook
Key words
semiconductors - photocatalysts - alcohols - dehydroxylative hydrogenolysis - dehydrogenation - N-alkylation - N-methylation - β-scissionPublication History
Received: 21 June 2023
Accepted after revision: 06 July 2023
Accepted Manuscript online:
06 July 2023
Article published online:
25 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem. Rev. 1995; 95: 69
- 2 Wenderich K, Mul G. Chem. Rev. 2016; 116: 14587
- 3 Khlyustova A, Sirotkin N, Kusova T, Kraev A, Titov V, Agafonov A. Mater. Adv. 2020; 1: 1193
- 4 Fujishima A, Honda K. Nature 1972; 238: 37
- 5 Kudo A, Miseki Y. Chem. Soc. Rev. 2009; 38: 253
- 6 Wang Q, Domen K. Chem. Rev. 2020; 120: 919
- 7 Yoshino S, Takayama T, Yamaguchi Y, Iwase A, Kudo A. Acc. Chem. Res. 2022; 55: 966
- 8 Nahar S, Zain MF. M, Kadhum AA. H, Hasan HA, Hasan MR. Materials 2017; 10: 629
- 9 Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. Environ. Sci. Pollut. Res. 2020; 27: 2522
- 10 Hong J, Cho K.-H, Presser V, Su X. Curr. Opin. Green Sustainable Chem. 2022; 36: 100644
- 11 Morikawa T, Sato S, Sekizawa K, Suzuki TM, Arai T. Acc. Chem. Res. 2022; 55: 933
- 12 Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K. Nature 2021; 598: 304
- 13 Mori S, Saito S. Green Chem. 2021; 23: 3575
- 14 Park S, Jeong J, Fujita K, Yamamoto A, Yoshida H. J. Am. Chem. Soc. 2020; 142: 12708
- 15 Pieber B, Malik JA, Cavedon C, Gisbertz S, Savateev A, Cruz D, Heil T, Zhang G, Seeberger PH. Angew. Chem. Int. Ed. 2019; 58: 9575
- 16 Ghosh I, Khamrai J, Savateev A, Shlapakov N, Antonietti M, König B. Science 2019; 365: 360
- 17 Manley DW, McBurney RT, Miller P, Howe RF, Rhydderch S, Walton JC. J. Am. Chem. Soc. 2012; 134: 13580
- 18 Pitre SP, Scaiano JC, Yoon TP. ACS Catal. 2017; 7: 6440
- 19 Gisbertz S, Pieber B. ChemPhotoChem 2020; 4: 456
- 20 Riente P, Noël T. Catal. Sci. Technol. 2019; 9: 5186
- 21 Parrino F, Bellardita M, García-López EI, Marcì G, Loddo V, Palmisano L. ACS Catal. 2018; 8: 11191
- 22 Henkel T, Brunne RM, Müller H, Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
- 23 Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
- 24 Ohtani B, Osaki H, Nishimoto S, Kagiya T. J. Am. Chem. Soc. 1986; 108: 308
- 25 Ohtani B, Kakimoto M, Nishimoto S, Kagiya T. J. Photochem. Photobiol., A 1993; 70: 265
- 26 Stroyuk OL, Kuchmy SY. Theor. Exp. Chem. 2020; 56: 143
- 27 Ma D, Zhai S, Wang Y, Liu A, Chen C. Molecules 2019; 24: 330
- 28 Caner J, Liu Z, Takada Y, Kudo A, Naka H, Saito S. Catal. Sci. Technol. 2014; 4: 4093
- 29 Takada Y, Caner J, Kaliyamoorthy S, Naka H, Saito S. Chem. Eur. J. 2017; 23: 18025
- 30 Takada Y, Caner J, Naka H, Saito S. Pure Appl. Chem. 2018; 90: 167
- 31 Ruberu TP. A, Nelson NC, Slowing II, Vela J. J. Phys. Chem. Lett. 2012; 3: 2798
- 32 Fu H, Chen H, Gao B, Lu T, Su Y, Zhou L, Liu M, Li H, Yang X. ChemCatChem 2022; 14,: 202200120
- 33 Shiraishi Y, Fujiwara K, Sugano Y, Ichikawa S, Hirai T. ACS Catal. 2013; 3: 312
- 34 Sasaki Y, Nemoto H, Saito K, Kudo A. J. Phys. Chem. C 2009; 113: 17536
- 35 Sasaki Y, Iwase A, Kato H, Kudo A. J. Catal. 2008; 259: 133
- 36 Liu Z, Caner J, Kudo A, Naka H, Saito S. Chem. Eur. J. 2013; 19: 9452
- 37 Yamauchi M, Saito H, Sugimoto T, Mori S, Saito S. Coord. Chem. Rev. 2022; 472: 214773
- 38 Shibata M, Nagata R, Saito S, Naka H. Chem. Lett. 2017; 46: 580
- 39 Qi M.-Y, Conte M, Anpo M, Tang Z.-R, Xu Y.-J. Chem. Rev. 2021; 121: 13051
- 40 Zhao L.-M, Meng Q.-Y, Fan X.-B, Ye C, Li X.-B, Chen B, Ramamurthy V, Tung C.-H, Wu L.-Z. Angew. Chem. Int. Ed. 2017; 56: 3020
- 41 Imamura K, Tsukahara H, Hamamichi K, Seto N, Hashimoto K, Kominami H. Appl. Catal., A 2013; 450: 28
- 42 Reed-Berendt BG, Latham DE, Dambatta MB, Morrill LC. ACS Cent. Sci. 2021; 7: 570
- 43 Kabadwal LM, Bera S, Banerjee D. Org. Chem. Front. 2021; 8: 7077
- 44 Barreiro EJ, Kümmerle AE, Fraga CA. M. Chem. Rev. 2011; 111: 5215
- 45 Tsarev VN, Morioka Y, Caner J, Wang Q, Ushimaru R, Kudo A, Naka H, Saito S. Org. Lett. 2015; 17: 2530
- 46 Wang L.-M, Jenkinson K, Wheatley AE. H, Kuwata K, Saito S, Naka H. ACS Sustainable Chem. Eng. 2018; 6: 15419
- 47 Wang L.-M, Kobayashi K, Arisawa M, Saito S, Naka H. Org. Lett. 2019; 21: 341
- 48 Chen W, Fu X, Liu X, Ye L, Yuan Y. Mol. Catal. 2023; 538: 112993
- 49 Wang L.-M, Morioka Y, Jenkinson K, Wheatley AE. H, Saito S, Naka H. Sci. Rep. 2018; 8: 6931
- 50 Hashiba Y, Mori S, Huang I, Morioka Y, Naka H, Saito S. Asian J. Org. Chem. 2023; e202300230 DOI:
- 51 Yu Q, Shi X, Greer T, Lietz CB, Kent KC, Li L. J. Proteome Res. 2016; 15: 3420
- 52 Kim J, Lee H, Yi S.-J, Kim K. Exp. Mol. Med. 2022; 54: 878
- 53 Dawson PE. Isr. J. Chem. 2011; 51: 862
- 54 Zhang L, Zhang Y, Deng Y, Shi F. Catal. Sci. Technol. 2015; 5: 3226
- 55 Stíbal D, Sá J, van Bokhoven JA. Catal. Sci. Technol. 2013; 3: 94
- 56 Zhang L, Zhang Y, Deng Y, Shi F. RSC Adv. 2015; 5: 14514
- 57 Wang B, Deng Z, Fu X, Xu C, Li Z. Appl. Catal., B 2018; 237: 970
- 58 Wada Y, Akiyama T, Harada K, Honma T, Naka H, Saito S, Arisawa M. RSC Adv. 2021; 11: 22230
- 59 Courtois C, Eder M, Schnabl K, Walenta CA, Tschurl M, Heiz U. Angew. Chem. Int. Ed. 2019; 58: 14255
- 60 Walenta CA, Kollmannsberger SL, Courtois C, Tschurl M, Heiz U. Phys. Chem. Chem. Phys. 2018; 20: 7105
- 61 Zhu Q, Nocera DG. J. Am. Chem. Soc. 2020; 142: 17913
- 62 Aynetdinova D, Callens MC, Hicks HB, Poh CY. X, Shennan BD. A, Boyd AM, Lim ZH, Leitch JA, Dixon DJ. Chem. Soc. Rev. 2021; 50: 5517
- 63 Liu P, Xue G, Lai Y, Li Y, Chen X, Guo Q. J. Phys. Chem. C 2022; 126: 3457
- 64 Bi X, Du G, Kalam A, Sun D, Yu Y, Su Q, Xu B, Al-Sehemi AG. Chem. Eng. Sci. 2021; 234: 116440
- 65 Lee J, Choi W. Environ. Sci. Technol. 2004; 38: 4026
- 66 Wada E, Takeuchi T, Fujimura Y, Tyagi A, Kato T, Yoshida H. Catal. Sci. Technol. 2017; 7: 2457
- 67 Coronado JM, Zorn ME, Tejedor-Tejedor I, Anderson MA. Appl. Catal., B 2003; 43: 329
- 68 Suda Y, Morimoto T, Nagao M. Langmuir 1987; 3: 99
- 69 Sato H, Ishikawa A, Saito H, Higashi T, Takeyasu K, Sugimoto T. Commun. Chem. 2023; 6: 8
- 70 Ooi T, Miura T, Maruoka K. J. Am. Chem. Soc. 1998; 120: 10790
- 71 Ooi T, Miura T, Ohmatsu K, Saito A, Maruoka K. Org. Biomol. Chem. 2004; 2: 3312