Subscribe to RSS
DOI: 10.1055/a-2114-9847
Früherkennung des sporadischen Pankreasadenokarzinoms
Early detection of sporadic pancreatic cancerZusammenfassung
Das Pankreasadenokarzinom (PK) nimmt stetig an Häufigkeit zu und stellt bereits die dritthäufigste tumorbedingte Todesursache in Deutschland dar. Voraussichtlich rückt es bis 2030 auf den 2. Platz und bis 2050 gar auf den 1. Platz der krebsbedingten Todesfälle vor. Das Pankreaskarzinom wird generell spät diagnostiziert und die 5-Jahre-Überlebensrate liegt bei nur 10%. Wird das PK aber im Tumorstadium IA diagnostiziert und therapiert, so beträgt das 5-Jahresüberleben rund 80%. Früherkennungsinitiativen verfolgen deshalb das Ziel, Hochrisikopersonen zu identifizieren und das sporadische Pankreaskarzinom frühzeitig festzustellen. Personen über 50 mit neu diagnostiziertem Diabetes stehen dabei im Mittelpunkt des Interesses. Aktuelle Entwicklungen und Früherkennungsstrategien werden angesprochen.
Abstract
The incidence of pancreatic cancer is rising. At present, pancreatic cancer is the third most common cancer-causing death in Germany, but it is expected to become the second in 2030 and finally the leading cause of cancer death in 2050. Pancreatic ductal adenocarcinoma (PC) is generally diagnosed at advanced stages, and 5-year-survival has remained poor. Early detection of sporadic PC at stage IA, however, can yield a 5-year-survival rate of about 80%. Early detection initiatives aim at identifying persons at high risk. People with new-onset diabetes at age 50 or older have attracted much interest. Novel strategies regarding how to detect sporadic PC at an early stage are being discussed.
Schlüsselwörter
Tumor - Screening - Diabetes - Neoplasie - Pankreas - Biomarker - Endosonografie - künstliche IntelligenzKeywords
tumor - screening - diabetes - neoplasia - pancreas - biomarker - endoscopic ultrasound - artificial intelligencePublication History
Received: 26 December 2022
Accepted after revision: 21 June 2023
Article published online:
12 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Todesursachen/Tabellen/sterbefaelle-krebs-insgesamt.html
- 2 Carioli G, Malvezzi M, Bertuccio P. et al. European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer. Ann Oncol 2021; 32: 478-487 DOI: 10.1016/j.annonc.2021.01.006.
- 3 Sung H, Siegel RL, Rosenberg PS. et al. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. Lancet Public Health 2019; 4: e137-47
- 4 The Lancet Gastroenterology Hepatology. Pancreatic cancer: a state of emergency?. Lancet Gastroenterol Hepatol 2021; 6 (02) 81 DOI: 10.1016/S2468-1253(20)30397-6. (PMID: 33444531)
- 5 Blackford AL, Canto MI, Klein AP. et al. Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis. J Natl Cancer Int 2020; 112: 1162-1169 DOI: 10.1093/jnci/djaa004. (PMID: 31958122)
- 6 Pereira SP, Oldfield L, Ney A. et al. Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol 2020; 5: 698-710 DOI: 10.1016/S2468-1253(19)30416-9. (PMID: 32135127)
- 7 https://www.awmf.org/uploads/tx_szleitlinien/032–010OLl_Exokrines-Pankreaskarzinom_2022–01.pdf
- 8 Sawhney MS, Calderwood AH, Thosani NC. et al. ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 2022; 95 (05) 817-826 DOI: 10.1016/j.gie.2021.12.001.
- 9 Dbouk M, Brewer Gutierrez OI, Lennon AM. et al. Guidelines on management of pancreatic cysts detected in high-risk individuals: An evaluation of the 2017 Fukuoka guidelines and the 2020 International Cancer of the Pancreas Screening (CAPS) consortium statements. Pancreatology 2021; 21: 613-621 DOI: 10.1016/j.pan.2021.01.017.
- 10 Tonini V, Zanni M. Early diagnosis of pancreatic cancer: What strategies to avoid a foretold catastrophe. World J Gastroenterol 2022; 28 (31) 4235-4248 DOI: 10.3748/wjg.v28.i31.4235. (PMID: 36159004)
- 11 Kim YJ, Oh CM, Park SK. et al. Fasting blood glucose and risk of incident pancreatic cancer. PLoS One 2022; 17 (10) e0274195 DOI: 10.1371/journal.pone.0274195. (PMID: 36301855)
- 12 Khadka R, Tian W, Hao X. et al. Risk factor, early diagnosis and overall survival on outcome of association between pancreatic cancer and diabetes mellitus: Changes and advances, a review. Int J Surg 2018; 52: 342-346 DOI: 10.1016/j.ijsu.2018.02.058.
- 13 Yuan C, Babic A, Khalaf N. et al. Diabetes, Weight Change, and Pancreatic Cancer Risk. JAMA Oncol 2020; 6 (10) e202948 DOI: 10.1001/jamaoncol.2020.2948. (PMID: 32789511)
- 14 Chari ST, Andersen DK. Metabolic Surveillance for Those at High Risk for Developing Pancreatic Cancer. Gastroenterology 2021; 161: 1379-1380 DOI: 10.1053/j.gastro.2021.07.006. (PMID: 34256058)
- 15 Sharma A, Smyrk TC, Levy MJ. et al. Fasting Blood Glucose Levels Provide Estimate of Duration and Progression of Pancreatic Cancer Before Diagnosis. Gastroenterology 2018; 155: 490-500.e2 DOI: 10.1053/j.gastro.2018.04.025.
- 16 Lemanska A, Price CA, Jeffreys N. et al. BMI and HbA1c are metabolic markers for pancreatic cancer: Matched case-control study using a UK primary care database. PLoS One 2022; 17 (10) e0275369 DOI: 10.1371/journal.pone.0275369. (PMID: 36197912)
- 17 Dbouk M, Katona BW, Brand RE. et al. The Multicenter Cancer of Pancreas Screening Study: Impact on Stage and Survival. J Clin Oncol 2022; 40 (28) 3257-3266 DOI: 10.1200/JCO.22.00298. (PMID: 35704792)
- 18 Klatte DCF, Boekestijn B, Wasser MNJM. et al. Pancreatic Cancer Surveillance in Carriers of a Germline CDKN2A Pathogenic Variant: Yield and Outcomes of a 20-Year Prospective Follow-Up. J Clin Oncol 2022; 40 (28) 3267-3277 DOI: 10.1200/JCO.22.00194.
- 19 Takikawa T, Kikuta K, Hamada S. et al. Clinical features and prognostic impact of asymptomatic pancreatic cancer. Sci Rep 2022; 12 (01) 4262 DOI: 10.1038/s41598-022-08083-6. (PMID: 35277545)
- 20 Overbeek KA, Levink IJM, Koopmann BDM. et al. Dutch Familial Pancreatic Cancer Surveillance Study Group. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022; 71 (06) 1152-1160 DOI: 10.1136/gutjnl-2020-323611.
- 21 Overbeek KA, Goggins MG, Dbouk M. et al. Timeline of Development of Pancreatic Cancer and Implications for Successful Early Detection in High-Risk Individuals. Gastroenterology 2022; 162 (03) 772-785.e4 DOI: 10.1053/j.gastro.2021.10.014.
- 22 Chhoda A, Vodusek Z, Wattamwar K. et al. Late-Stage Pancreatic Cancer Detected During High-Risk Individual Surveillance: A Systematic Review and Meta-Analysis. Gastroenterology 2022; 162 (03) 786-798 DOI: 10.1053/j.gastro.2021.11.021.
- 23 Rosenthal MH, Wolpin BM, Yurgelun MB. Surveillance Imaging in Individuals at High Risk for Pancreatic Cancer: Not a Ceiling, but Rather a Floor Upon Which to Build. Gastroenterology 2022; 162 (03) 700-702 DOI: 10.1053/j.gastro.2021.12.259.
- 24 Yurgelun MB. Building on More Than 20 Years of Progress in Pancreatic Cancer Surveillance for High-Risk Individuals. J Clin Oncol 2022; 40 (28) 3230-3234 DOI: 10.1200/JCO.22.01287. (PMID: 35862875)
- 25 Umar N, Kamran U, Sia M. et al. How often is pancreatic cancer missed on CT or MRI imaging? A novel root cause analysis system to establish the most plausible explanation for post imaging pancreatic cancer. Presented at UEG Week 2022; 11 October 2022; Vienna, Austria.
- 26 Chen PT, Wu T, Wang P. et al. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology 2022; 306 (01) 220152 DOI: 10.1148/radiol.220152.
- 27 Parajuli P, Nguyen TL, Prunier C. et al. Pancreatic cancer triggers diabetes through TGF-β–mediated selective depletion of islet β-cells. Life Sci Alliance 2020; 3 (06) e201900573 DOI: 10.26508/lsa.201900573.
- 28 Pang W, Yao W, Dai X. et al. Pancreatic cancer-derived exosomal microRNA-19a induces β-cell dysfunction by targeting ADCY1 and EPAC2. Int J Biol Sci 2021; 17: 3622-3633 DOI: 10.7150/ijbs.56271. (PMID: 34512170)
- 29 Su J, Pang W, Zhang A. et al. Exosomal miR-19a decreases insulin production by targeting Neurod1 in pancreatic cancer associated diabetes. Mol Biol Rep 2022; 49: 1711-1720 DOI: 10.1007/s11033-021-06980-z. (PMID: 34854011)
- 30 Xu YF, Hannafon BN, Zhao YD. et al. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017; 8: 77028-77040 DOI: 10.18632/oncotarget.20332. (PMID: 29100367)
- 31 Li J, Li Y, Chen S. et al. Highly Sensitive Exosome Detection for Early Diagnosis of Pancreatic Cancer Using Immunoassay Based on Hierarchical Surface-Enhanced Raman Scattering Substrate. Small Methods 2022; 6: e2200154 DOI: 10.1002/smtd.202200154. (PMID: 35460217)
- 32 Channon LM, Tyma VM, Xu Z. et al. Small extracellular vesicles (exosomes) and their cargo in pancreatic cancer: Key roles in the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2022; 1877 (03) 188728 DOI: 10.1016/j.bbcan.2022.188728.
- 33 Chen J, Yao D, Chen W. et al. Serum exosomal miR-451a acts as a candidate marker for pancreatic cancer. Int J Biol Markers 2022; 37: 74-80 DOI: 10.1177/17246008211070018. (PMID: 35001683)
- 34 Nam H, Hong SS, Jung KH. et al. A Serum Marker for Early Pancreatic Cancer With a Possible Link to Diabetes. J Natl Cancer Inst 2022; 114: 228-234 DOI: 10.1093/jnci/djab191.
- 35 Hinestrosa JP, Kurzrock R, Lewis JM. et al. Early-stage multi-cancer detection using an extracellular vesicle protein-based blood test. Commun Med (Lond) 2022; 2: 29 DOI: 10.1038/s43856-022-00088-6. (PMID: 35603292)
- 36 Ferguson S, Yang KS, Zelga P. et al. Single-EV analysis (sEVA) of mutated proteins allows detection of stage 1 pancreatic cancer. Sci Adv 2022; 8 (16) eabm3453 DOI: 10.1126/sciadv.abm3453. (PMID: 35452280)
- 37 Yoshioka Y, Shimomura M, Saito K. et al. Circulating cancer-associated extracellular vesicles as early detection and recurrence biomarkers for pancreatic cancer. Cancer Sci 2022; 113 (10) 3498-3509 DOI: 10.1111/cas.15500. (PMID: 35848896)
- 38 Singhi AD, Wood LD. Early detection of pancreatic cancer using DNA-based molecular approaches. Nat Rev Gastroenterol Hepatol 2021; 18 (07) 457-468 DOI: 10.1038/s41575-021-00470-0. (PMID: 34099908)
- 39 Wu H, Ou S, Zhang H. et al. Advances in biomarkers and techniques for pancreatic cancer diagnosis. Cancer Cell Int DOI: 10.1186/s12935-022-02640-9.
- 40 Brand RE, Persson J, Bratlie SO. et al. Detection of Early-Stage Pancreatic Ductal Adenocarcinoma From Blood Samples: Results of a Multiplex Biomarker Signature Validation Study. Clin Transl Gastroenterol 2022; 13 (03) e00468 DOI: 10.14309/ctg.0000000000000468. (PMID: 35166713)
- 41 Kuwatani M, Sakamoto N. Pathological and molecular diagnoses of early cancer with bile and pancreatic juice. Dig Endosc 2022; 34 (07) 1340-1355 DOI: 10.1111/den.14348. (PMID: 35543333)
- 42 Nakamura K, Zhu Z, Roy S. et al. An Exosome-based Transcriptomic Signature for Noninvasive, Early Detection of Patients With Pancreatic Ductal Adenocarcinoma: A Multicenter Cohort Study. Gastroenterology 2022; 163 (05) 1252-1266.e2 DOI: 10.1053/j.gastro.2022.06.090.
- 43 Debernardi S, Blyuss O, Rycyk D. et al. Urine biomarkers enable pancreatic cancer detection up to 2 years before diagnosis. Int J Cancer 2023; 152 (04) 769-780 DOI: 10.1002/ijc.34287.
- 44 Makler A, Narayanan R, Asghar W. An Exosomal miRNA Biomarker for the Detection of Pancreatic Ductal Adenocarcinoma. Biosensors (Basel) 2022; 12 (10) 831 DOI: 10.3390/bios12100831. (PMID: 36290970)
- 45 https://www.morningstar.com/news/business-wire/20221221005065/bluestar-genomics-advances-to-commercial-phase-rebrands-as-clearnote-health
- 46 https://www.reuters.com/business/healthcare-pharmaceuticals/japanese-biotech-firm-uses-tiny-worms-test-pancreatic-cancer-2022–11–30/
- 47 https://immunoviainc.com/immunovia-strengthens-us-organization-to-continue-commercialization-of-its-novel-immray-pancan-d-test/
- 48 Kartal E, Schmidt TSB, Molina-Montes E. et al. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71 (07) 1359-1372 DOI: 10.1136/gutjnl-2021-324755.
- 49 Nagata N, Nishijima S, Kojima Y. et al. Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study. Gastroenterology 2022; 163: 222-238 DOI: 10.1053/j.gastro.2022.03.054.
- 50 Daley D. The role of the microbiome in pancreatic oncogenesis. Int Immunol 2022; 34 (09) 447-454 DOI: 10.1093/intimm/dxac036. (PMID: 35863313)
- 51 Kotsiliti E. Microbial signatures in pancreatic cancer. Nat Rev Gastroenterol Hepatol 2022; 19 (06) 350 DOI: 10.1038/s41575-022-00625-7. (PMID: 35505242)
- 52 Herremans KM, Riner AN, Cameron ME. et al. The oral microbiome, pancreatic cancer and human diversity in the age of precision medicine. Microbiome 2022; 10 (01) 93 DOI: 10.1186/s40168-022-01262-7. (PMID: 35701831)
- 53 Kohi S, Macgregor-Das A, Dbouk M. et al. Alterations in the Duodenal Fluid Microbiome of Patients With Pancreatic Cancer. Clin Gastroenterol Hepatol 2022; 20 (02) e196-e227 DOI: 10.1016/j.cgh.2020.11.006.
- 54 Kang JD, Clarke SE, Costa AF. Factors associated with missed and misinterpreted cases of pancreatic ductal adenocarcinoma. Eur Radiol 2021; 31 (04) 2422-2432 DOI: 10.1007/s00330-020-07307-5. (PMID: 32997176)
- 55 Mukherjee S, Patra A, Khasawneh H. et al. Radiomics-based Machine-learning Models Can Detect Pancreatic Cancer on Prediagnostic Computed Tomography Scans at a Substantial Lead Time Before Clinical Diagnosis. Gastroenterology 2022; 163: 1435-1446.e3 DOI: 10.1053/j.gastro.2022.06.066.
- 56 Chen PT, Wu T, Wang P. et al. Pancreatic Cancer Detection on CT Scans with Deep Learning: A Nationwide Population-based Study. Radiology 2023; 306 (01) 172-182 DOI: 10.1148/radiol.220152.
- 57 Qureshi TA, Gaddam S, Wachsman AM. et al. Predicting pancreatic ductal adenocarcinoma using artificial intelligence analysis of pre-diagnostic computed tomography images. Cancer Biomark 2022; 33: 211-217 DOI: 10.3233/CBM-210273. (PMID: 35213359)
- 58 Javed S, Qureshi TA, Gaddam S. et al. Risk prediction of pancreatic cancer using AI analysis of pancreatic subregions in computed tomography images. Front Oncol 2022; 12: 1007990 DOI: 10.3389/fonc.2022.1007990. (PMID: 36439445)
- 59 Bian Y, Zheng Z, Fang X. et al. Artificial Intelligence to Predict Lymph Node Metastasis at CT in Pancreatic Ductal Adenocarcinoma. Radiology 2023; 306 (01) 160-169 DOI: 10.1148/radiol.220329. (PMID: 36066369)
- 60 Boursi B, Patalon T, Webb M. et al. Validation of the Enriching New-Onset Diabetes for Pancreatic Cancer Model: A Retrospective Cohort Study Using Real-World Data. Pancreas 2022; 51: 196-199 DOI: 10.1097/MPA.0000000000002000. (PMID: 35404897)
- 61 Sharma S, Tapper WJ, Collins A. et al. Predicting Pancreatic Cancer in the UK Biobank Cohort Using Polygenic Risk Scores and Diabetes Mellitus. Gastroenterology 2022; 162: 1665-1674.e2 DOI: 10.1053/j.gastro.2022.01.016.
- 62 Mellenthin C, Balaban VD, Dugic A. et al. Risk Factors for Pancreatic Cancer in Patients with New-Onset Diabetes: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14 (19) 4684 DOI: 10.3390/cancers14194684.
- 63 Kitano M, Yoshida T, Itonaga M. et al. Impact of endoscopic ultrasonography on diagnosis of pancreatic cancer.. J Gastroenterol 2019; 54 (01) 19-32 DOI: 10.1007/s00535-018-1519-2. (PMID: 30406288)
- 64 van Riet PA, Erler NS, Bruno MJ. et al. Comparison of fine-needle aspiration and fine-needle biopsy devices for endoscopic ultrasound-guided sampling of solid lesions: a systemic review and meta-analysis. Endoscopy 2021; 53 (04) 411-423 DOI: 10.1055/a-1206-5552. (PMID: 32583392)
- 65 Nakaoka K, Ohno E, Kawabe N. et al. Current Status of the Diagnosis of Early-Stage Pancreatic Ductal Adenocarcinoma. Diagnostics (Basel) 2023; 13 (02) 215 DOI: 10.3390/diagnostics13020215. (PMID: 36673023)
- 66 Ignee A, Jenssen C, Arcidiacono PG. et al. Endoscopic ultrasound elastography of small solid pancreatic lesions: A multicenter study. Endoscopy 2018; 50: 1071-1079 DOI: 10.1055/a-0588-4941. (PMID: 29689572)
- 67 Kataoka K, Ishikawa T, Ohno E. et al. Endoscopic ultrasound elastography for small solid pancreatic lesions with or without main pancreatic duct dilatation. Pancreatology 2021; 21 (02) 451-458 DOI: 10.1016/j.pan.2020.12.012. (PMID: 35070031)
- 68 Shin CM, Villa E. The efficiency of contrast-enhanced endoscopic ultrasound (EUS) combined with EUS elastography for pancreatic cancer diagnosis: a systematic review and meta-analysis. Ultrasonography 2023; 42 (01) 20-30 DOI: 10.14366/usg.22103. (PMID: 36588180)
- 69 Goyal H, Sherazi SAA, Gupta S. et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: a systemic review. Therap Adv Gastroenterol 2022; 15 DOI: 10.1177/17562848221093873. (PMID: 35509425)
- 70 Dumitrescu EA, Ungureanu BS, Cazacu IM. et al. Diagnostic Value of Artificial Intelligence-Assisted Endoscopic Ultrasound for Pancreatic Cancer: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12 (02) 309 DOI: 10.3390/diagnostics12020309. (PMID: 35204400)
- 71 Scherübl H. Prävention des Pankreaskarzinoms. Dtsch Med Wochenschr 2023; 148 (05) 246-252 DOI: 10.1055/a-1975-2366. (PMID: 36848888)