Diabetologie und Stoffwechsel 2023; 18(S 02): 449-465
DOI: 10.1055/a-2109-9410
DDG-Praxisempfehlung

Empfehlungen zur Ernährungsprävention des Typ-2-Diabetes mellitus

Thomas Skurk
1   ZIEL – Institute for Food & Health, Core Facility Humanstudien, Technische Universität München, Freising, Deutschland
,
Arthur Grünerbel
2   Diabeteszentrum München Süd, München, Deutschland
,
Sandra Hummel*
3   Institut für Diabetesforschung, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, München-Neuherberg, Deutschland
,
Stefan Kabisch
4   Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke, Potsdam, Deutschland
,
Winfried Keuthage
5   Schwerpunkpraxis für Diabetes und Ernährungsmedizin, Münster, Deutschland
,
Karsten Müssig
6   Klinik für Innere Medizin, Gastroenterologie und Diabetologie, Niels-Stensen-Kliniken, Franziskus-Hospital Harderberg, Georgsmarienhütte, Deutschland
,
Helmut Nussbaumer
7   Diabetologikum Burghausen, Burghausen, Deutschland
,
Diana Rubin
8   Vivantes Klinikum Spandau, Berlin, Deutschland
9   Vivantes Humboldt Klinikum, Berlin, Deutschland
,
Marie-Christine Simon
10   Institut für Ernährungs- und Lebensmittelwissenschaften, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Deutschland
,
Astrid Tombek
11   Diabetes-Klinik Bad Mergentheim, Bad Mergentheim, Deutschland
,
Katharina S. Weber
12   Institut für Epidemiologie, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
für den Ausschuss Ernährung der DDG › Author Affiliations
Aktualisierungshinweis

Die DDG-Praxisempfehlungen werden regelmäßig zur zweiten Jahreshälfte aktualisiert. Bitte stellen Sie sicher, dass Sie jeweils die neueste Version lesen und zitieren.

* Für die Arbeitsgruppe Diabetes & Schwangerschaft der DDG.




Publication History

Article published online:
30 October 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lindström J, Neumann A, Sheppard KE. et al. Take action to prevent diabetes – the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolism 2010; 42 (Suppl. 01) S37-S55
  • 2 Skurk T, Bosy-Westphal A, Grünerbel A. et al. Dietary recommendations for persons with type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2022; 130 (Suppl. 01) S151-S184
  • 3 McNaughton SA, Mishra GD, Brunner EJ. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the Whitehall II Study. Diabetes Care 2008; 31: 1343-1348
  • 4 Benziger CP, Roth GA, Moran AE. The Global Burden of Disease Study and the Preventable Burden of NCD. Global heart 2016; 11: 393-397
  • 5 Uusitupa M, Khan TA, Viguiliouk E. et al. Prevention of Type 2 Diabetes by Lifestyle Changes: A Systematic Review and Meta-Analysis. Nutrients 2019; 11: 2611
  • 6 Haw JS, Galaviz KI, Straus AN. et al. Long-term Sustainability of Diabetes Prevention Approaches: A Systematic Review and Meta-analysis of Randomized Clinical Trials. JAMA Intern Med 2017; 177: 1808-1817
  • 7 Howell S, Kones R. “Calories in, calories out” and macronutrient intake: the hope, hype, and science of calories. Am J Physiol Endocrinol Metab 2017; 313: E608-E612
  • 8 Willett W, Rockström J, Loken B. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019; 393: 447-492
  • 9 Nelson ME, Hamm MW, Hu FB. et al. Alignment of Healthy Dietary Patterns and Environmental Sustainability: A Systematic Review. Adv Nutr 2016; 7: 1005-1025
  • 10 Poole MK, Musicus AA, Kenney EL. Alignment Of US School Lunches With The EAT-Lancet Healthy Reference Diet’s Standards For Planetary Health. Health Aff (Millwood) 2020; 39: 2144-2152
  • 11 Goulding T, Lindberg R, Russell CG. The affordability of a healthy and sustainable diet: an Australian case study. Nutr J 2020; 19: 109
  • 12 Breidenassel C, Schäfer AC, Micka M. et al. The Planetary Health Diet in contrast to the food-based dietary guidelines of the German Nutrition Society (DGE). A DGE statement. Ernahrungs Umschau 2022; 59: 56-72.e1-3
  • 13 Beal T, Ortenzi F, Fanzo J. Estimated micronutrient shortfalls of the EAT-Lancet planetary health diet. Lancet Planet Health 2023; 7: e233-e237
  • 14 Delgermaa D, Yamaguchi M, Nomura M. Assessment of Mongolian dietary intake for planetary and human health. PLOS Glob Public Health 2023; 3: e0001229
  • 15 Marchion DM, Cacau LT, Carli de E. et al. Low Adherence to the EAT-Lancet Sustainable Reference Diet in the Brazilian Population: Findings from the National Dietary Survey 2017-2018. Nutrients 2022; 14: 1187
  • 16 Nomura M, Yamaguchi M, Inada Y. et al. Current dietary intake of the Japanese population in reference to the planetary health diet-preliminary assessment. Front Nutr 2023; 10: 1116105
  • 17 Ojo O, Jiang Y, Ojo O. et al. The Association of Planetary Health Diet with the Risk of Type 2 Diabetes and Related Complications: A Systematic Review. Healthcare (Basel) 2023; 11: 1120
  • 18 Cacau LT, Benseñor IM, Goulart AC. et al. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021; 13: 3691
  • 19 Rehner J, Schmartz GP, Kramer T. et al. The Effect of a Planetary Health Diet on the Human Gut Microbiome: A Descriptive Analysis. Nutrients 2023; 15: 1924
  • 20 Laine JE, Huybrechts I, Gunter MJ. et al. Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study. Lancet Planet Health 2021; 5: e786-e796
  • 21 González CA, Bonet C, Huerta JM. et al. Dietary greenhouse gas emissions and the risk of coronary heart disease and type 2 diabetes. Lancet Planet Health 2022; 6: e299
  • 22 Berthy F, Brunin J, Allès B. et al. Higher adherence to the EAT-Lancet reference diet is associated with higher nutrient adequacy in the NutriNet-Santé cohort: a cross-sectional study. Am J Clin Nutr 2023; 117: 1174-1185
  • 23 López GE, Batis C, González C. et al. EAT-Lancet Healthy Reference Diet score and diabetes incidence in a cohort of Mexican women. Eur J Clin Nutr 2023; 77: S348-S355
  • 24 OECD: Health at a Glance 2021: OECD Indicators. Im Internet (Stand: 06.06.2023): https://www.oecd.org/health/health-at-a-glance/
  • 25 Mensink GBM, Schienkiewitz A, Haftenberger M. et al. Übergewicht und Adipositas in Deutschland: Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2013; 56: 786-794
  • 26 Yuen MMA. Health Complications of Obesity: 224 Obesity-Associated Comorbidities from a Mechanistic Perspective. Gastroenterol Clin North Am 2023; 52: 363-380
  • 27 Tuomilehto J, Lindström J, Eriksson JG. et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343-1350
  • 28 Knowler WC, Barrett-Connor E, Fowler SE. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403
  • 29 Deedwania PC, Volkova N. Current Treatment Options for the Metabolic Syndrome. Curr Treat Options Cardiovasc Med 2005; 7: 61-74
  • 30 UK Prospective Diabetes Study 7: response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients, UKPDS Group. Metabolism 1990; 39: 905-912
  • 31 Goodpaster BH, Krishnaswami S, Resnick H. et al. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly men and women. Diabetes Care 2003; 26: 372-379
  • 32 Pan XR, Li GW, Hu YH. et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care 1997; 20: 537-544
  • 33 Hamman RF, Wing RR, Edelstein SL. et al. Effect of weight loss with lifestyle intervention on risk of diabetes. Diabetes Care 2006; 29: 2102-2107
  • 34 Galaviz KI, Weber MB, Straus A. et al. Global Diabetes Prevention Interventions: A Systematic Review and Network Meta-analysis of the Real-World Impact on Incidence, Weight, and Glucose. Diabetes Care 2018; 41: 1526-1534
  • 35 Diabetes Prevention Program Research Group: Knowler WC, Fowler SE, Hamman RF. et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet 2009; 374: 1677-1686
  • 36 Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol 2015; 3: 866-875
  • 37 Chen Y, Zhang P, Wang J. et al. Associations of progression to diabetes and regression to normal glucose tolerance with development of cardiovascular and microvascular disease among people with impaired glucose tolerance: a secondary analysis of the 30 year Da Qing Diabetes Prevention Outcome Study. Diabetologia 2021; 64: 1279-1287
  • 38 Fritsche A, Wagner R, Heni M. et al. Different Effects of Lifestyle Intervention in High- and Low-Risk Prediabetes: Results of the Randomized Controlled Prediabetes Lifestyle Intervention Study (PLIS). Diabetes 2021; 70: 2785-2795
  • 39 Evert AB, Dennison M, Gardner CD. et al. Nutrition Therapy for Adults With Diabetes or Prediabetes: A Consensus Report. Diabetes Care 2019; 42: 731-754
  • 40 Klein S, Sheard NF, Pi-Sunyer X. et al. Weight management through lifestyle modification for the prevention and management of type 2 diabetes: rationale and strategies. A statement of the American Diabetes Association, the North American Association for the Study of Obesity, and the American Society for Clinical Nutrition. Am J Clin Nutr 2004; 80: 257-263
  • 41 National Task Force on the Prevention and Treatment of Obesity, National Institutes of Health. Very low-calorie diets. JAMA 1993; 270: 967-974
  • 42 Churuangsuk C, Hall J, Reynolds A. et al. Diets for weight management in adults with type 2 diabetes: an umbrella review of published meta-analyses and systematic review of trials of diets for diabetes remission. Diabetologia 2022; 65: 14-36
  • 43 Bundesärztekammer. Telemedizinische Methoden in der Patientenversorgung – Begriffliche Verortung 2015. Im Internet (Stand: 06.06.2023): https://www.bundesaerztekammer.de/fileadmin/user_upload/_old-files/downloads/pdf-Ordner/Telemedizin_Telematik/Telemedizin/Telemedizinische_Methoden_in_der_Patientenversorgung_Begriffliche_Verortung.pdf
  • 44 Kempf K, Altpeter B, Berger J. et al. Efficacy of the Telemedical Lifestyle intervention Program TeLiPro in Advanced Stages of Type 2 Diabetes: A Randomized Controlled Trial. Diabetes Care 2017; 40: 863-871
  • 45 Su D, McBride C, Zhou J. et al. Does nutritional counseling in telemedicine improve treatment outcomes for diabetes? A systematic review and meta-analysis of results from 92 studies. J Telemed Telecare 2016; 22: 333-347
  • 46 Halvorsen RE, Elvestad M, Molin M. et al. Fruit and vegetable consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr Prev Health 2021; 4: 519-531
  • 47 Li M, Fan Y, Zhang X. et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 2014; 4: e005497
  • 48 Ahmed A, Lager A, Fredlund P. et al. Consumption of fruit and vegetables and the risk of type 2 diabetes: a 4-year longitudinal study among Swedish adults. J Nutr Sci 2020; 9: e14
  • 49 Satija A, Bhupathiraju SN, Rimm EB. et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Med 2016; 13: e1002039
  • 50 InterAct Consortium 2015. Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015; 58: 1394-1408
  • 51 Cooper AJ, Forouhi NG, Ye Z. et al. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 2012; 66: 1082-1092
  • 52 Hughes J, Pearson E, Grafenauer S. Legumes – A Comprehensive Exploration of Global Food-Based Dietary Guidelines and Consumption. Nutrients 2022; 14: 3080
  • 53 Bielefeld D, Grafenauer S, Rangan A. The Effects of Legume Consumption on Markers of Glycaemic Control in Individuals with and without Diabetes Mellitus: A Systematic Literature Review of Randomised Controlled Trials. Nutrients 2020; 12: 2123
  • 54 Pearce M, Fanidi A, Bishop TRP. et al. Associations of Total Legume, Pulse, and Soy Consumption with Incident Type 2 Diabetes: Federated Meta-Analysis of 27 Studies from Diverse World Regions. J Nutr 2021; 151: 1231-1240
  • 55 Papakonstantinou E, Galanopoulos K, Kapetanakou AE. et al. Short-Term Effects of Traditional Greek Meals: Lentils with Lupins, Trahana with Tomato Sauce and Halva with Currants and Dried Figs on Postprandial Glycemic Responses-A Randomized Clinical Trial in Healthy Humans. Int J Environ Res Public Health 2022; 19: 11502
  • 56 Afshin A, Micha R, Khatibzadeh S. et al. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 278-288
  • 57 Hosseinpour-Niazi S, Mirmiran P, Fallah-Ghohroudi A. et al. Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial. Br J Nutr 2015; 114: 213-219
  • 58 George ES, Daly RM, Tey SL. et al. Perspective: Is it Time to Expand Research on “Nuts” to Include “Seeds”?. Justifications and Key Considerations. Adv Nutr 2022; 13: 1016-1027
  • 59 Khalili L, A-Elgadir TME, Mallick AK. et al. Nuts as a Part of Dietary Strategy to Improve Metabolic Biomarkers: A Narrative Review. Front Nutr 2022; 9: 881843
  • 60 Blanco Mejia S, Kendall CWC, Viguiliouk E. et al. Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials. BMJ Open 2014; 4: e004660
  • 61 Martínez-González MA, García-Arellano A, Toledo E. et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. PloS One 2012; 7: e43134
  • 62 Wu L, Wang Z, Zhu J. et al. Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutr Rev 2015; 73: 409-425
  • 63 Johnston BC, Zeraatkar D, Han MA. et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann Intern Med 2019; 171: 756-764
  • 64 Deutsche Diabetes Gesellschaft (DDG) und diabetesDE – Deutsche Diabetes-Hilfe. Hrsg. Deutscher Gesundheitsbericht Diabetes 2021. Die Bestandsaufnahme. https://www.diabetesde.org/system/files/documents/20201107_gesundheitsbericht2021.pdf
  • 65 Ramachandran A, Snehalatha C, Mary S. et al. The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia 2006; 49: 289-297
  • 66 Dyson PA, Twenefour D, Breen C. et al. Diabetes UK evidence-based nutrition guidelines for the prevention and management of diabetes. Diabet Med 2018; 35: 541-547
  • 67 Imamura F, O’Connor L, Ye Z. et al. Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 2015; 351: h3576
  • 68 ElSayed NA, Aleppo G, Aroda VR. et al. Summary of Revisions: Standards of Care in Diabetes-2023. Diabetes Care 2023; 46 (Suppl. 01) S5-S9
  • 69 Malik VS, Hu FB. The role of sugar-sweetened beverages in the global epidemics of obesity and chronic diseases.. Nat Rev Endocrinol 2022; 18: 205-218
  • 70 Malik VS, Hu FB. Fructose and Cardiometabolic Health: What the Evidence From Sugar-Sweetened Beverages Tells Us. J Am Coll Cardiol 2015; 66: 1615-1624
  • 71 Stern D, Mazariegos M, Ortiz-Panozo E. et al. Sugar-Sweetened Soda Consumption Increases Diabetes Risk Among Mexican Women. J Nutr 2019; 149: 795-803
  • 72 Gardener H, Rundek T, Wright CB. et al. Dietary sodium and risk of stroke in the Northern Manhattan study. Stroke 2012; 43: 1200-1205
  • 73 Huang M, Quddus A, Stinson L. et al. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: the prospective Women’s Health Initiative observational study. Am J Clin Nutr 2017; 106: 614-622
  • 74 Geidl-Flueck B, Hochuli M, Németh Á. et al. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J Hepatol 2021; 75: 46-54
  • 75 GBD 2016 Alcohol Collaborators. Alcohol use and burden for 195 countries and territories, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2018; 392: 1015-1035
  • 76 Kulzer B, Albus C, Herpertz S. et al. Psychosoziales und Diabetes. Diabetol Stoffwechs 2020; 15 (Suppl. 01) S232-S248
  • 77 Snijder MB, van der Heijden AA, van Dam RM. et al. Is higher dairy consumption associated with lower body weight and fewer metabolic disturbances? The Hoorn Study. Am J Clin Nutr 2007; 85: 989-995
  • 78 Soedamah-Muthu SS, Ding EL, Al-Delaimy WK. et al. Milk and dairy consumption and incidence of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies. Am J Clin Nutr 2011; 93: 158-171
  • 79 Pereira MA, Jacobs DR, van Horn L. et al. Dairy consumption, obesity, and the insulin resistance syndrome in young adults: the CARDIA Study. JAMA 2022; 287: 2081-2089
  • 80 Azadbakht L, Mirmiran P, Esmaillzadeh A. et al. Dairy consumption is inversely associated with the prevalence of the metabolic syndrome in Tehranian adults. Am J Clin Nutr 2005; 82: 523-530
  • 81 Elwood PC, Givens DI, Beswick AD. et al. The survival advantage of milk and dairy consumption: an overview of evidence from cohort studies of vascular diseases, diabetes and cancer. J Am Coll Nutr 2008; 27: 723S-734S
  • 82 Ferland A, Lamarche B, Château-Degat ML. et al. Dairy product intake and its association with body weight and cardiovascular disease risk factors in a population in dietary transition. J Am Coll Nutr 2011; 30: 92-99
  • 83 Margolis KL, Wei F, de Boer ICH. et al. A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr 2011; 141: 1969-1974
  • 84 Wennersberg MH, Smedman A, Turpeinen AM. et al. Dairy products and metabolic effects in overweight men and women: results from a 6-mo intervention study. Am J Clin Nutr 2009; 90: 960-968
  • 85 Wannamethee SG, Hu FB. Obesity Epidemiology. Int J Epidemiol 2009; 38: 325-326
  • 86 Tremblay A, Gilbert JA. Milk products, insulin resistance syndrome and type 2 diabetes. J Am Coll Nutr 2009; 28 (Suppl. 01) 91S-102S
  • 87 McGlynn ND, Khan TA, Wang L. et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5: e222092
  • 88 Lee JJ, Khan TA, McGlynn N. et al. Relation of Change or Substitution of Low- and No-Calorie Sweetened Beverages With Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Prospective Cohort Studies. Diabetes Care 2022; 45: 1917-1930
  • 89 Rogers PJ, Appleton KM. The effects of low-calorie sweeteners on energy intake and body weight: a systematic review and meta-analyses of sustained intervention studies. Int J Obes (Lond) (2005) 2021; 45: 464-478
  • 90 Mazi TA, Stanhope KL. Erythritol. An In-Depth Discussion of Its Potential to Be a Beneficial Dietary Component. Nutrients 2023; 15: 204
  • 91 Tiwaskar M, Mohan V. Clearing the Myths around non-nutritive/noncaloric Sweeteners: An Efficacy and Safety Evaluation. J Assoc Physicians India 2022; 70: 11-12
  • 92 Daher MI, Matta JM, Abdel N. et al. Non-nutritive sweeteners and type 2 diabetes: Should we ring the bell?. Diabetes Res Clin Pract 2019; 155: 107786
  • 93 O’Connor D, Pang M, Castelnuovo G. et al. A rational review on the effects of sweeteners and sweetness enhancers on appetite, food reward and metabolic/adiposity outcomes in adults. Food Funct 2021; 12: 442-465
  • 94 Suez J, Cohen Y, Valdés-Mas R. et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185: 3307-3328.e19
  • 95 Bayındır Gümüş A, Keser A, Tunçer E. et al. Effect of saccharin, a non-nutritive sweeteners, on insulin and blood glucose levels in healthy young men: A crossover trial. Diabetes Metab Syndr 2022; 16: 102500
  • 96 Meng Y, Li S, Khan J. et al. Sugar- and Artificially Sweetened Beverages Consumption Linked to Type 2 Diabetes, Cardiovascular Diseases, and All-Cause Mortality: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Nutrients 2021; 13: 2636
  • 97 Ayoub-Charette S, McGlynn ND, Lee D. et al. Rationale, Design and Participants Baseline Characteristics of a Crossover Randomized Controlled Trial of the Effect of Replacing SSBs with NSBs versus Water on Glucose Tolerance, Gut Microbiome and Cardiometabolic Risk in Overweight or Obese Adult SSB Consumer: Strategies to Oppose SUGARS with Non-Nutritive Sweeteners or Water (STOP Sugars NOW) Trial and Ectopic Fat Sub-Study. Nutrients 2023; 15: 1238
  • 98 Pang MD, Goossens GH, Blaak EE. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front Nutr 2020; 7: 598340
  • 99 Verbraucherzentrale. Hrsg Vegetarisch, vegan oder flexitarisch – was steckt dahinter?. Im Internet (Stand: 11.05.2023): 2022 https://www.verbraucherzentrale.de/wissen/lebensmittel/gesund-ernaehren/vegetarisch-vegan-oder-flexitarisch-was-steckt-dahinter-67508
  • 100 Neuenschwander M, Ballon A, Weber K. et al. Role of diet in type 2 diabetes incidence: umbrella review of meta-analyses of prospective observational studies. BMJ 2019; 366: l2368
  • 101 Neuenschwander M, Barbaresko J, Pischke CR. et al. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med 2020; 17: e1003347
  • 102 Li J, Glenn AJ, Yang Q. et al. Dietary Protein Sources, Mediating Biomarkers, and Incidence of Type 2 Diabetes: Findings From the Women’s Health Initiative and the UK Biobank. Diabetes Care 2022; 45: 1742-1753
  • 103 Schlesinger S. Diet and Diabetes Prevention: Is a Plant-Based Diet the Solution?. Diabetes Care 2023; 46: 6-8
  • 104 Ley SH, Hamdy O, Mohan V. et al. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 2014; 383: 1999-2007
  • 105 Qian F, Liu G, Hu FB. et al. Association Between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Intern Med 2019; 179: 1335-1344
  • 106 Lee Y, Park K. Adherence to a Vegetarian Diet and Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Nutrients 2017; 9: 603
  • 107 Tonstad S, Stewart K, Oda K. et al. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr Metab Cardiovasc Dis 2011; 23: 292-299
  • 108 Selinger E, Neuenschwander M, Koller A. et al. Evidence of a vegan diet for health benefits and risks – an umbrella review of meta-analyses of observational and clinical studies. Critical Reviews in Food Science and Nutrition 2022, ePub. Im Internet: Full article: Evidence of a vegan diet for health benefits and risks – an umbrella review of meta-analyses of observational and clinical studies (tandfonline.com), Stand: 22.06.2023.
  • 109 Koivusalo SB, Rönö K, Klemetti MM. et al. Gestational Diabetes Mellitus Can Be Prevented by Lifestyle Intervention: The Finnish Gestational Diabetes Prevention Study (RADIEL): A Randomized Controlled Trial. Diabetes Care 2016; 39: 24-30
  • 110 Wang C, Wei Y, Zhang X. et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol 2017; 216: 340-351
  • 111 Griffith RJ, Alsweiler J, Moore AE. et al. Interventions to prevent women from developing gestational diabetes mellitus: an overview of Cochrane Reviews. Cochrane Database Syst Rev 2020; 6: CD012394
  • 112 Tobias DK, Zhang C, van Dam RM. et al. Physical activity before and during pregnancy and risk of gestational diabetes mellitus: a meta-analysis. Diabetes Care 2011; 34: 223-229
  • 113 Guo XY, Shu J, Fu XH. et al. Improving the effectiveness of lifestyle interventions for gestational diabetes prevention: a meta-analysis and meta-regression. BJOG 2019; 126: 311-320
  • 114 Chen Z, Qian F, Liu G. et al. Prepregnancy plant-based diets and the risk of gestational diabetes mellitus: a prospective cohort study of 14,926 women. Am J Clin Nutr 2021; 114: 1997-2005
  • 115 Tieu J, Shepherd E, Middleton P. et al. Dietary advice interventions in pregnancy for preventing gestational diabetes mellitus. Cochrane Database Syst Rev 2017; 1: CD006674
  • 116 Lamain-de Ruiter M, Kwee A, Naaktgeboren CA. et al. External validation of prognostic models to predict risk of gestational diabetes mellitus in one Dutch cohort: prospective multicentre cohort study. BMJ 2016; 354: i4338
  • 117 Brunner S, Stecher L, Ziebarth S. et al. Excessive gestational weight gain prior to glucose screening and the risk of gestational diabetes: a meta-analysis. Diabetologia 2015; 58: 2229-2237
  • 118 Barnes RA, Wong T, Ross GP. et al. Excessive Weight Gain Before and During Gestational Diabetes Mellitus Management: What Is the Impact?. Diabetes Care 2020; 43: 74-81
  • 119 Deutsche Gesellschaft für Ernährung e. V. (7. aktualisierte Ausgabe 2021): Referenzwerteübersicht. Im Internet (Stand: 05.06.2023): https://www.dge.de/wissenschaft/referenzwerte/
  • 120 Ouellette C, Rudkowska I, Lemieux S. et al. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis 2014; 13: 86
  • 121 Vallée Marcotte B, Cormier H, Guénard F. et al. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J Nutrigenet Nutrigenomics 2016; 9: 1-11
  • 122 Rudkowska I, Pérusse L, Bellis C. et al. Interaction between Common Genetic Variants and Total Fat Intake on Low-Density Lipoprotein Peak Particle Diameter: A Genome-Wide Association Study. J Nutrigenet Nutrigenomics 2015; 8: 44-53
  • 123 Seidelmann SB, Feofanova E, Yu B. et al. Genetic Variants in SGLT1, Glucose Tolerance, an Cardiometabolic Risk. J Am Coll Cardiol 2018; 72: 1763-1773
  • 124 Rasmussen KM, Yaktine AL. Hrsg. Weight gain during pregnancy. Reexamining the guidelines. National Academies Press (US). Washington, DC: National Academies Press; 2009
  • 125 Uusitupa M, Louheranta A, Lindström J. et al. The Finnish Diabetes Prevention Study. Br J Nutr 2000; 83 (Suppl. 01) S137-S142