Synlett 2024; 35(04): 394-404
DOI: 10.1055/a-2106-1585
account
11th Singapore International Chemistry Conference (SICC-11)

Sustainable Organocatalytic Processes to Access Alkyl SuFEx Click Hubs and Tetrasubstituted Carbon Centers: Potential Libraries for Multidisciplinary Applications

Woo Hee Kim
,
Jin Hyun Park
,
Sun Bu Lee
,
Muhammad Israr
,
Byeong Jun Koo
,
Soo Bok Kim
,
Soyeon Kim
,
Han Yong Bae
Generous support from the Ministry of Science, ICT and Future Planning of Korea (2020R1C1C1006440, 2021R1A2C2093597, and 2019R1A6A1A10073079) is acknowledged. This work was also supported by the Institute of Civil-Military Technology Cooperation funded by the Defense Acquisition Program Administration and Ministry of Trade, Industry and Energy, Korean Government (20-CM-BR-05).


This Account is dedicated to Prof. Dr. Benjamin List (Max-Planck-Institut für Kohlenforschung) and the Department of Chemistry of Sungkyunkwan University on the occasion of its 70th anniversary.

Abstract

In this Account, we provide an overview of our recent achievements on sustainable organocatalysis. Our group has unveiled the effectiveness of specific organocatalysts under various environmentally benign conditions. We have found that N-heterocyclic carbene and phosphazene superbases exhibit favorable performances in bulk aqueous reaction environments. In addition, the use of organic superacid catalysts results in synergistic effects when hydrogen-bond donor catalysts are assembled in aqueous media. Moreover, we discovered that a neutral organic salt precatalyst can generate a potent silylium Lewis acid catalyst in situ, specifically under solvent-free conditions. These innovative, sustainable organocatalytic processes have successfully facilitated the conversion of raw starting materials into valuable compounds, including sulfur(VI) fluoride exchange (SuFEx) click hubs and tetrasubstituted carbon centers incorporating heteroatoms.

1 Introduction

2 Water-Accelerated N-Heterocyclic Carbene (NHC) Catalysis for β-Aminosulfonyl Fluorides

3 Water-Accelerated Phosphazene Superbase Catalysis for β-Sulfidosulfonyl Fluorides and γ-Geminal Dithioester-Incorporated Sulfonyl Fluorides

4 Water-Accelerated Synergistic Superacid Catalysis for α-Tertiary Amines

5 Solvent-, Metal-, and Purification-Free PPM (parts per million) Neutral Organic Salt Catalysis for Tertiary Cyanohydrin Derivatives

6 Conclusion



Publication History

Received: 13 May 2023

Accepted after revision: 05 June 2023

Accepted Manuscript online:
05 June 2023

Article published online:
19 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a For a recent review focused on sustainability, accessibility and designability, recyclability, catalytic activity, new reactivity, and universality, see: Aukland MH, List B. Pure Appl. Chem. 2021; 93: 1371
    • 1b List B, Yang JW. Science 2006; 313: 1584
    • 1c MacMillan DW. C. Nature 2008; 455: 304
    • 1d For industrial applications see Comprehensive Chirality . Carreira EM, Yamamoto H. Elsevier; Amsterdam: 2012. For selected comprehensive books, see
    • 1e Asymmetric Organocatalysis 2009
    • 1f Science of Synthesis: Asymmetric Organocatalysis Maruoka K.; Thieme: Stuttgart, 2012
    • 1g Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. Dalko PI. Wiley-VCH; Weinheim: 2013
    • 2a van der Helm MP, Klemm B, Eelkema R. Nat. Rev. Chem. 2019; 3: 491
    • 2b Mase N, Barbas III CF. Org. Biomol. Chem. 2010; 8: 4043
    • 2c Raj M, Singh VK. Chem. Commun. 2009; 6687
    • 2d Goswami P, Park JH, Bae HY. Tetrahedron 2020; 76: 131254
    • 2e Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
  • 3 Chanda A, Fokin VV. Chem. Rev. 2009; 109: 725
  • 4 Simon MO, Li CJ. Chem. Soc. Rev. 2012; 41: 1415
    • 5a Bae HY, Song CE. ACS Catal. 2015; 5: 3613
    • 5b Song CE, Park SJ, Hwang IS, Jung MJ, Shim SY, Bae HY, Jung JY. Nat. Commun. 2019; 10: 851
    • 5c Kleiner CM, Schreiner PR. Chem. Commun. 2006; 4315
  • 6 Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
  • 7 Frenkel-Pinter M, Rajaei V, Glass JB, Hud NV, Williams LD. J. Mol. Evol. 2021; 89: 2
  • 8 Park JH, Lee SB, Koo BJ, Bae HY. ChemSusChem 2022; 15: e202201000
  • 9 Dong J, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 10a Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. Chem. Soc. Rev. 2019; 48: 4731
    • 10b Narayanan A, Jones LH. Chem. Sci. 2015; 6: 2650
    • 10c Xu L, Dong J. Chin. J. Chem. 2020; 38: 414
    • 10d Fitzgerald PR, Paegel BM. Chem. Rev. 2021; 121: 7155
    • 10e Chelagha A, Louvel D, Taponard A, Berthelon R, Tlili A. Catalysts 2021; 11: 830
  • 11 Levin E, Ivry E, Diesendruck CE, Lemcoff NG. Chem. Rev. 2015; 115: 4607
  • 12 Ungureanu A, Levens A, Candish L, Lupton DW. Angew. Chem. Int. Ed. 2015; 54: 11780
    • 13a Zheng Q, Dong J, Sharpless KB. J. Org. Chem. 2016; 81: 11360
    • 13b Chen Q, Mayer P, Mayr H. Angew. Chem. Int. Ed. 2016; 55: 12664
  • 14 Park SJ, Hwang I.-S, Chang YJ, Song CE. J. Am. Chem. Soc. 2021; 143: 2552
  • 15 Narayan S, Muldoon J, Finn MG, Fokin VV, Kolb HC, Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
  • 16 Pirrung MC. Chem. Eur. J. 2006; 12: 1312
  • 17 Lee SB, Park JH, Bae HY. ChemSusChem 2022; 15: e202200634
  • 18 Park JH, Gonzalez-Montiel GA, Cheong PH, Bae HY. Org. Lett. 2023; 25: 1056
    • 19a Shishido Y, Tomoike F, Kimura Y, Kuwata K, Yano T, Fukui K, Fujikawa H, Sekido Y, Murakami-Tonami Y, Kameda T, Shuto S, Abe H. Chem. Commun. 2017; 53: 11138
    • 19b Aguilar B, Amissah F, Duverna R, Lamango NS. Curr. Cancer Drug Targets 2011; 11: 752
  • 20 Han Z, Fukuzumi T, Sawada E, Schulz-Dobrick M, Kim J. (BASF SE, Ludwigshafen) EP2018/052618 2018
  • 21 Breslow R. Acc. Chem. Res. 1991; 24: 159
  • 22 Breslow R. Acc. Chem. Res. 2004; 37: 471
  • 23 Park JH, Song SG, Shin MH, Song C, Bae HY. ACS Sens. 2022; 7: 423
    • 24a Chen X, Zha G.-F, Bare GA. L, Leng J, Wang S.-M, Qin H.-L. Adv. Synth. Catal. 2017; 359: 3254
    • 24b Liu H, Moku B, Li F, Ran J, Han J, Long S, Zha GF, Qin HL. Adv. Synth. Catal. 2019; 361: 4596
  • 25 Bae HY, Kim MJ, Sim JH, Song CE. Angew. Chem. Int. Ed. 2016; 55: 10825
  • 26 Goswami P, Cho SY, Park JH, Kim WH, Kim HJ, Shin MH, Bae HY. Nat. Commun. 2022; 13: 2702
    • 27a Clayden J, Donnard M, Lefranc J, Tetlow DJ. Chem. Commun. 2011; 47: 4624
    • 27b Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Nat. Prod. Rep. 2016; 33: 491
  • 28 Xu C, Reep C, Jarvis J, Naumann B, Captain B, Takenaka N. Catalysts 2021; 11: 712
  • 29 Israr M, Bae HY. Green Chem. 2023; 25: 2387
  • 30 Zhou H, Zhou Y, Bae HY, Leutzsch M, Li Y, De C K, Cheng G.-J, List B. Nature 2022; 605: 84
  • 31 Mukaiyama T, Matsuo J.-i. Trityl tetrakis(pentafluorophenyl)borate. In Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; New York: 2004