Synlett 2023; 34(17): 2017-2021
DOI: 10.1055/a-2099-6389
letter

Synthetic Studies toward the C1–C12 Fragment of Amphidinolide U

Ismaila Ciss
a   BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France
b   Laboratoire de Chimie Organique et Chimie Thérapeutique, FMPO-UCAD Université Cheikh Anta-Diop, Dakar, Senegal
,
Matar Seck
b   Laboratoire de Chimie Organique et Chimie Thérapeutique, FMPO-UCAD Université Cheikh Anta-Diop, Dakar, Senegal
,
Bruno Figadère
a   BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France
,
Laurent Ferrié
a   BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France
› Author Affiliations
I.C. thanks the Ministère français des affaires étrangères for providing a French–Senegalese cooperation fellowship.


Abstract

Amphidinolide U is a cytotoxic marine macrolide isolated from Amphidinium sp., sharing 75% of the amphidinolide C backbone. We report here a synthetic study of the C1–C12 fragment of amphidinolide U. The C6–C12 pattern was built using consecutive regioselective ring opening of epoxides, a directed reaction to control newly formed stereogenic centers. In parallel, the C1–C5 moiety was constructed by taking advantage of a symmetrical diol. Attempts to cross-couple the C1–C5 and C6–C12 fragments by using a Suzuki cross-coupling reaction led to poor conversion rates. The same transformation on a close substrate model used during past studies on the total synthesis of amphidinolides F and C2 was successful. These contrasting results could be explained by a presumed steric hindrance of the protecting group adjacent to the vinyl function involved in the cross-coupling reaction. Our investigations will stimulate the optimization of C(sp2)–C(sp3) cross-coupling reactions with bulky substrates, with the aim of achieving a total synthesis of amphidinolide U.

Supporting Information



Publication History

Received: 30 April 2023

Accepted after revision: 24 May 2023

Accepted Manuscript online:
24 May 2023

Article published online:
06 July 2023

© 2023 . Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Tsuda M, Endo T, Kobayashi J. Tetrahedron 1999; 55: 14565
  • 2 Kubota T, Tsuda M, Kobayashi J. Org. Lett. 2001; 3: 1363
  • 3 Ferrié L, Figadère B. Org. Lett. 2010; 12: 4976
  • 4 Fenneteau J, Vallerotto S, Ferrié L, Figadère B. Tetrahedron Lett. 2015; 56: 3758
  • 5 Ferrié L, Fenneteau J, Figadère B. Org. Lett. 2018; 20: 3192
  • 6 Ferrié L, Ciss I, Fenneteau J, Vallerotto S, Seck M, Figadère B. J. Org. Chem. 2022; 87: 1110
  • 7 Mahapatra S, Carter RG. J. Am. Chem. Soc. 2013; 135: 10792
  • 8 Valot G, Mailhol D, Regens CS, O’Malley DP, Godineau E, Takikawa H, Philipps P, Fürstner A. Chem. Eur. J. 2015; 21: 2398
  • 9 Roy S, Spilling CD. Org. Lett. 2010; 12: 5326
  • 10 Clark JS, Yang G, Osnowski AP. Org. Lett. 2013; 15: 1464
  • 11 Morra NA, Pagenkopf BL. Org. Lett. 2011; 13: 572
  • 12 Williams DR, De R, Fultz MW, Fischer DA, Morales-Ramos Á, Rodríguez-Reyes D. Org. Lett. 2020; 22: 4118
  • 13 Armstrong A, Pyrkotis C. Tetrahedron Lett. 2009; 50: 3325
  • 14 Su Y.-X, Dai W.-M. Tetrahedron 2018; 74: 1546
  • 15 Akwaboah DC, Wu D, Forsyth CJ. Org. Lett. 2017; 19: 1180
  • 16 Wu D, Forsyth CJ. Org. Lett. 2013; 15: 1178
  • 17 Romiti F, Decultot L, Clark JS. J. Org. Chem. 2022; 87: 8126
  • 18 Mohapatra DK, Rahaman H. Synlett 2008; 837
  • 19 Rodríguez D, Mulero M, Prieto JA. J. Org. Chem. 2006; 71: 5826
  • 20 Mihelich ED, Daniels K, Eickhoff DJ. J. Am. Chem. Soc. 1981; 103: 7690
  • 21 Corey EJ, Fuchs PL. Tetrahedron Lett. 1972; 13: 3769
  • 22 Müller S, Liepold B, Roth GJ, Bestmann HJ. Synlett 1996; 521
  • 23 Miwa K, Aoyama T, Shioiri T. Synlett 1994; 107
  • 24 Ley SV, Tackett MN, Maddess ML, Anderson JC, Brennan PE, Cappi MW, Heer JP, Helgen C, Kori M, Kouklovsky C, Marsden SP, Norman J, Osborn DP, Palomero M. Á, Pavey JB. J, Pinel C, Robinson LA, Schnaubelt J, Scott JS, Spilling CD, Watanabe H, Wesson KE, Willis MC. Chem. Eur. J. 2009; 15: 2874
  • 25 Cid MB, Pattenden G. Synlett 1998; 540
  • 26 Hada M, Tanaka Y, Ito M, Murakami M, Amii H, Ito Y, Nakatsuji H. J. Am. Chem. Soc. 1994; 116: 8754
  • 27 Fegheh-Hassanpour Y, Arif T, Sintim HO, Al Mamari HH, Hodgson DM. Org. Lett. 2017; 19: 3540
  • 28 Chemler SR, Trauner D, Danishefsky SJ. Angew. Chem. Int. Ed. 2001; 40: 4544
  • 29 Berthold D, Breit B. Chem. Eur. J. 2018; 24: 16770
  • 30 Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
  • 31 Dombrowski AW, Gesmundo NJ, Aguirre AL, Sarris KA, Young JM, Bogdan AR, Martin MC, Gedeon S, Wang Y. ACS Med. Chem. Lett. 2020; 11: 597
  • 32 Chung JH, Tang AH, Geraghty K, Corcilius L, Kaiser M, Payne RJ. Org. Lett. 2020; 22: 3089
  • 33 Foote KM, Hayes CJ, John MP, Pattenden G. Org. Biomol. Chem. 2003; 1: 3917
  • 34 Compound 22 A 1.9 M solution of t-BuLi in hexane (0.19 ml, 0.36 mmol, 2 equiv) was added to a solution of alkyl iodide 19 (62 mg, 0.18 mmol, 1 equiv) in degassed Et2O (0.68 mL) at –78 °C. After 3 min, 9-MeO-BBN (91 μl, 0.43 mmol, 2.4 equiv) was added, followed by additional THF (0.62 mL), and the solution was maintained at –78 °C for 10 min. The mixture was then warmed to rt and a 3 M solution of K3PO4 in degassed H2O (0.15 mL, 0.43 mmol, 2.4 equiv) was added. A solution of vinyl iodide 21 (98 mg, 0.15 mmol, 0.8 equiv) in DMF (0.74 mL) was added, followed by additional DMF (0.12 mL). The mixture was then treated with PdCl2(dppf) (5.27 mg, 7.2 μmol, 0.04 equiv) and heated to 70 °C for 16 h. The mixture was then cooled, partitioned between Et2O (1 mL) and H2O (1 mL), and extracted with Et2O (3 × 5 mL). The combined organics were dried (MgSO4), filtered, concentrated in vacuo, and purified by column chromatography (silica gel, neat hexanes) to give a colorless oil; yield: 69.5 mg (50%); [α]D 20 –24 (c = 0.23, CH2Cl2). IR (neat): 2954, 2931, 2877, 1460, 1446, 1379, 1251, 1149, 1109, 1070, 1043, 1004, 952, 873, 835, 775, 738, 688, 608 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.97–7.81 (m, 2 H), 7.66–7.48 (m, 3 H), 7.26 (m, 2 H), 6.87 (d, J = 8.1 Hz, 2 H), 5.16–5.03 (m, 1 H), 4.78 (s, 2 H), 4.50–4.35 (m, 2 H), 3.80 (s, 3 H), 3.79–3.70 (m, 2 H), 3.56 (t, J = 7.0 Hz, 2 H), 2.99 (br d, J = 14.2 Hz, 1 H), 2.83 (dd, J = 14.2, 8.7 Hz, 1 H), 2.33 (t, J = 7.0 Hz, 2 H), 2.29–1.95 (m, 6 H), 1.64 (s, 3 H), 1.55–1.35 (m, 1 H), 1.30–1.20 (m, 1 H), 1.13 (d, J = 6.8 Hz, 3 H), 0.99 (d, J = 6.9 Hz, 3 H), 0.92 (t, J = 7.9 Hz, 9 H), 0.89 (s, 9 H), 0.54 (q, J = 7.9 Hz, 6 H), 0.07 (s, 6 H). 13C NMR (75 MHz, CDCl3): δ = 159.34, 146.63, 140.68, 136.94, 133.60, 130.84, 129.42 (4 C), 127.92 (2 C), 125.53, 113.96 (2 C), 110.66, 73.44, 72.74, 71.01, 68.92, 58.07, 55.44, 47.26, 36.86, 36.50, 36.39, 32.34, 26.36 (3 C), 26.05, 18.18, 17.33, 16.07, 13.31, 7.04 (3 C), 5.25 (3 C), –4.16, –4.27. HRMS (ESI): m/z [M + NH4]+ calcd for C43H76NO6SSi2: 790.4926; found: 790.4915
  • 35 Arefolov A, Panek JS. J. Am. Chem. Soc. 2005; 127: 5596
  • 36 Bruno NC, Niljianskul N, Buchwald SL. J. Org. Chem. 2014; 79: 4161
  • 37 Altman RA, Buchwald SL. Nat. Protoc. 2007; 2: 3115