CC BY 4.0 · SynOpen 2023; 07(02): 243-257 DOI: 10.1055/a-2081-9249
Recent Developments in Ultrasound-Promoted Aqueous-Mediated Greener Synthesis of Biologically Vital Indole Derivatives
Kanaram Choupra
,
Ashish Kumar Aheer
,
Anshu Dandia∗
,
Meenakshi Jain∗
,
Financial support was provided by the University Grants Commission, New Delhi (No. F.30-572/2021-BSR) and by the Council of Scientific and Industrial Research, New Delhi, India.
Abstract
The extensive range of uses of N-heterocycles as potent bioactive motifs has attracted researchers to expand newer methods for their efficient synthesis. Particularly, indoles are widely known for their prevalent pharmacological properties. Green chemistry provides various synthetic tools viz . alternative energy resources, nonconventional solvents, nano-catalysts, etc. Modern strategies of using ultrasound as an alternative energy resource in organic synthesis has led to the development of environment friendly and cost-effective techniques. The chemical and mechanical effects of ultrasound waves impart significant enhancement in both stoichiometric and catalytic reactions. The exclusive physicochemical properties of water offer widespread utility for carrying out organic reactions in this medium. The aim of this review article is to provide an inclusive summary of the combined use of ultrasound and aqueous media for the facile synthesis of biologically vital indole derivatives.
1 Introduction
2 Synthesis of Biologically Vital Indoles
2.1 Spirocyclic Indoles
2.2 Non-spiro 3-Substituted Indoles
2.3 Miscellaneous Indole Syntheses
3 Conclusions
Key words
green synthesis -
indoles -
aqueous medium -
ultrasound -
alternative energy
Publication History
Received: 05 January 2023
Accepted after revision: 20 April 2023
Accepted Manuscript online: 26 April 2023
Article published online: 24 May 2023
© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Ferrazzano L,
Catani M,
Cavazzini A,
Martelli G,
Corbisiero D,
Cantelmi P,
Fantoni T,
Mattellone A,
De Luca C,
Felletti S,
Cabri W,
Tolomelli A.
Green Chem. 2022; 24: 975
1b
Zimmerman JB,
Anastas PT,
Erythropel HC,
Leitner W.
Science 2020; 367: 397
1c
Anastas P,
Eghbali N.
Chem. Soc. Rev. 2010; 39: 301
2a
Banerjee B.
Ultrason. Sonochem. 2017; 35: 1
2b
Puri S,
Kaur B,
Parmar A,
Kumar H.
Curr. Org. Chem. 2013; 17: 1790
2c
Baig RB. N,
Varma RS.
Chem. Soc. Rev. 2012; 41: 1559
3a
Das P,
Bhattacharyya SK,
Banerji P,
Das NC.
Nano-Struct. Nano-Objects 2021; 25: 100641
3b
Zhao S,
Yao C,
Zhang Q,
Chen G,
Yuan Q.
Chem. Eng. J. 2019; 374: 68
3c
Muthupandian AK.
Ultrason. Sonochem. 2011; 18: 864
4a
Pagadala R,
Kasi V,
Shabalala NG,
Jonnalagadda SB.
Arabian J. Chem. 2022; 15: 103544
4b
Patil R,
Bhoir P,
Deshpande P,
Wattamwar T,
Shirude M,
Chaskar P.
Ultrason. Sonochem. 2013; 20: 1327
4c
Patil R,
Bhoir P,
Deshpande P,
Wattamwar T,
Shirude M,
Chaskar P.
Ultrason. Sonochem. 2013; 20: 1327
4d
Banerjee B.
Aust. J. Chem. 2017; 70: 872
4e
Banerjee B.
Ultrason. Sonochem. 2017; 35: 1
4f
Kaur N.
Synth. Commun. 2018; 48: 1235
4g
Kaur G,
Sharma A,
Banerjee B.
ChemistrySelect 2018; 3: 5283
4h
Banerjee B.
ChemistrySelect 2019; 4: 2484
4i
Sharma A,
Priya A,
Kaur M,
Singh A,
Kaur G,
Banerjee B.
Synth. Commun. 2021; 51: 3209
5a
Gawande MB,
Bonifacio VD. B,
Luque R,
Brancoa PS,
Varma RS.
Chem. Soc. Rev. 2013; 42: 5522
5b
Kommi DN,
Kumar D,
Seth K,
Chakraborti AK.
Org. Lett. 2013; 15: 1158
5c
Butler RN,
Coyne AG.
Chem. Rev. 2010; 110: 6302
5d
Leadbeater NE.
Chem. Commun. 2005; 2881
6a
Cortes-Clerget M,
Yu J,
Kincaid JR. A,
Walde P,
Gallou F,
Lipshutz BH.
Chem. Sci. 2021; 12: 4237
6b
Banerjee B.
J. Serb. Chem. Soc. 2017; 82: 755
7a
Zhaoa S,
Yao C,
Dong Z,
Chen G,
Yuan Q.
Particuology 2020; 48: 88
7b
Naeimi H,
Lahouti S.
J. Iran. Chem. Soc. 2018; 15: 2017
7c
Yusof NS. M,
Babgi B,
Aksu M,
Madhavan J,
Muthupandian AK.
Ultrason. Sonochem. 2016; 29: 568
8a
Martins P,
Jesus J,
Santos S,
Raposo LR,
Roma-Rodrigues C,
Baptista PV,
Fernandes AR.
Molecules 2015; 20: 16852
8b
Baumann M,
Baxendale IR.
Beilstein J. Org. Chem. 2013; 9: 2265
8c
Dua R,
Shrivastava S,
Sonwane SK,
Srivastava SK.
Adv. Biol. Res. 2011; 5: 120
8d
Baumann M,
Baxendale IR,
Ley SV,
Nikbin N.
Beilstein J. Org. Chem. 2011; 7: 442
8e
Sharom MS,
Miles JR. W,
Harris CR,
McEwen FL.
Water Res. 1980; 14: 1095
9a
Khan S,
Quraishi MA.
Arabian J. Sci. Eng. 2010; 35: 73
9b
Behera GB,
Behera PK,
Mishra BK.
J. Surf. Sci. Technol. 2007; 23: 1
9c
Steingruber E.
Indigo and Indigo Colorants. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH; Weinheim: 2004
9d
Darzynkiewicz Z.
Methods Cell Biol. 1990; 33: 285
10a
Demirel N,
Haber J,
Ivlev SI,
Meggers E.
Organometallics 2022; 41: 3852
10b
Lizza JR,
Bremerich M,
McCabe SR,
Wipf P.
Org. Lett. 2018; 20: 6760
10c
Li QZ,
Zeng R,
Fan Y,
Liu YQ,
Qi T,
Zhang X,
Li JL.
Angew. Chem. 2022; 61: e202116629
10d
Diez-Gonzalez S,
Marion N,
Nolan SP.
Chem. Rev. 2009; 109: 3612
11a
Sravanthi TV,
Manju SL.
Eur. J. Pharm. Sci. 2016; 91: 1
11b
Yan W,
Zhao SS,
Ye YH,
Zhang YY,
Zhang Y,
Xu JY,
Yin SM,
Tan RX.
J. Nat. Prod. 2019; 82: 2132
11c
Palmisanoa G,
Penonia A,
Sistia M,
Tibilettia F,
Tollaria S,
Nicholas KM.
Curr. Org. Chem. 2010; 14: 2409
12a
Zhang H.-H,
Shi F.
Acc. Chem. Res. 2022; 55: 2562
12b
Nasri S,
Bayat M,
Miankooshki FR,
Samet NH.
Mol. Diversity 2022; 26: 3411
12c
Tu M.-S,
Chen K.-W,
Wu P,
Zhang Y.-C,
Liu X.-Q,
Shi F.
Org. Chem. Front. 2021; 8: 2643
12d
Zhang Y.-C,
Jiang F,
Shi F.
Acc. Chem. Res. 2020; 53: 425
12e
Mei G.-J,
Shi F.
Chem. Commun. 2018; 54: 6607
12f
Yan LJ,
Wang YC.
ChemistrySelect 2016; 1: 6948
13
Bazgir A,
Ahadi S,
Ghahremanzadeh R,
Khavasi HR,
Mirzaei P.
Ultrason. Sonochem. 2010; 17: 447
14
Dandia A,
Singh R,
Bhaskaran S,
Samant SD.
Green Chem. 2011; 13: 1852
15
Dandia A,
Saini D,
Bhaskaran S,
Saini DK.
Med. Chem. Res. 2014; 23: 725
16
Dandia A,
Parewa V,
Jain AK,
Rathore KS.
Green Chem. 2011; 13: 2135
17
Dandia A,
Jain AK,
Bhati DS.
Synth. Commun. 2011; 41: 2905
18
Dandia A,
Singh R,
Joshi J,
Maheshwari S,
Soni P.
RSC Adv. 2013; 3: 18992
19
Arya K,
Rawat DS,
Sasai H.
Green Chem. 2012; 14: 1956
20
Gholizadeh S,
Radmoghadam K.
Orient. J. Chem. 2013; 29: 1637
21
Hojati SF,
Mohamadi S.
Org. Prep. Proced. Int. 2020; 52: 304
22
Yu CB,
Lyu H,
Cai Y,
Miao XY,
Miao ZW.
RSC Adv. 2013; 3: 18857
23
Liju W,
Ablajan K,
Jun F.
Ultrason. Sonochem. 2015; 22: 113
24
Elyasi Z,
Ghomi JS,
Najafi GR.
Ultrason. Sonochem. 2021; 75: 105614
25
Li JT,
Dai HG,
Xu WZ,
Li TS.
Ultrason. Sonochem. 2006; 13: 24
26
Li JT,
Sun MX,
He GY,
Xu XY.
Ultrason. Sonochem. 2011; 18: 412
27
Joshi RS,
Mandhane PG,
Diwakar SD,
Gill CH.
Ultrason. Sonochem. 2010; 17: 298
28
Khorshidi A,
Tabatabaeian K.
J. Serb. Chem. Soc. 2011; 76: 1347
29
Li JT,
Sun SF,
Sun MX.
Ultrason. Sonochem. 2011; 18: 42
30
Rahimi S,
Amrollahi MA,
Kheilkordi Z.
C. R. Chim. 2015; 18: 558
31
Amrollahi MA,
Kheilkordi Z.
J. Iran. Chem. Soc. 2016; 13: 925
32
Shaikh T,
Sharma A,
Kaur H.
ChemistrySelect 2019; 4: 245
33
Lu CW,
Wang JJ,
Liu YH,
Shan WJ,
Sun Q,
Shi L.
Res. Chem. Intermed. 2017; 43: 943
34
Nikpassand M,
Fekri LZ,
Nabatzadeh M.
Synth. Commun. 2017; 47: 29
35
Kasar SB,
Thopate SR.
Curr. Green Chem. 2018; 5: 177
36
Deshmukh SR,
Nalkar AS,
Thopate SR.
Polycyclic Aromat. Compd. 2022; 42: 6501
37
Dandia A,
Singh R,
Bhaskaran S.
Ultrason. Sonochem. 2010; 17: 399
38
Dandia A,
Singh R,
Bhaskaran S.
Ultrason. Sonochem. 2011; 18: 1113
39
Shaikh S,
Rasal S,
Ramana MM. V.
React. Kinet., Mech. Catal. 2021; 133: 405
40
Ali A,
Ali A,
Tahir A,
Bakht MA,
Ahsan MJ.
J. Enzyme Inhib. Med. Chem. 2022; 37: 135