Subscribe to RSS
DOI: 10.1055/a-2080-5631
A Sulfoxide Reagent for Sulfinylative Cross-Coupling
This work was supported by the Walter Benjamin Program (500656103) of the Deutsche Forschungsgemeinschaft.
Abstract
I recently documented the strategic use of a sulfoxide reagent as a sulfur monoxide equivalent to enable one-pot, three-component syntheses of sulfoxides and sulfinamides. The sulfoxide reagent donates the SO unit upon the reaction with Grignard reagents (RMgX) as sulfenate anions (RSO–). The anionic sulfur intermediates can be readily transformed into sulfoxides and sulfinamides via trapping with appropriate carbon and nitrogen electrophiles. This Synpacts article highlights my first efforts to establish a general sulfinylative cross-coupling platform.
1 Introduction
2 Development of a Sulfoxide Reagent as a Sulfur Monoxide Equivalent
3 Conclusions and Future Directions
Key words
sulfinylative cross-coupling - Grignard reagents - one-pot synthesis - sulfinamides - sulfoxidesPublication History
Received: 09 April 2023
Accepted after revision: 25 April 2023
Accepted Manuscript online:
25 April 2023
Article published online:
25 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Taniguchi N. Eur. J. Org. Chem. 2016; 2157
- 1b Chatterjee S, Makai S, Morandi B. Angew. Chem. Int. Ed. 2021; 60: 758
- 2a Cogan DA, Liu G, Kim K, Backes BJ, Ellman JA. J. Am. Chem. Soc. 1998; 120: 8011
- 2b Mei H, Liu J, Pajkert R, Röschenthaler G.-V, Han J. Org. Biomol. Chem. 2020; 18: 3761
- 3a Davis FA, Zhang Y, Andemichael Y, Fang T, Fanelli DL, Zhang H. J. Org. Chem. 1999; 64: 1403
- 3b Ruano JL. G, Parra A, Yuste F, Mastranzo VM. Synthesis 2008; 311
- 4a Billard T, Greiner A, Langlois BR. Tetrahedron 1999; 55: 7243
- 4b Zhu R.-H, Shi X.-X. Tetrahedron: Asymmetry 2011; 22: 387
- 5 Woolven H, González-Rodríguez C, Marco I, Thompson AL, Willis MC. Org. Lett. 2011; 13: 4876
- 6 Lenstra DC, Vedovato V, Ferrer Flegeau E, Maydom J, Willis MC. Org. Lett. 2016; 18: 2086
- 7 Lo PK. T, Oliver GA, Willis MC. J. Org. Chem. 2020; 85: 5753
- 8 Saito F. Angew. Chem. Int. Ed. 2022; 61: e202213872
- 9a Singh SP, O’Donnell JS, Schwan AL. Org. Biomol. Chem. 2010; 8: 1712
- 9b Bernoud E, Le Duc G, Bantreil X, Prestat G, Madec D, Poli G. Org. Lett. 2010; 12: 320
- 9c Jia T, Bellomo A, Montel S, Zhang M, El Baina K, Zheng B, Walsh PJ. Angew. Chem. Int. Ed. 2014; 53: 260
- 9d Gelat F, Lohier JF, Gaumont AC, Perrio S. Adv. Synth. Catal. 2015; 357: 2011
- 9e Chang M.-Y, Cheng Y.-C, Chan C.-K. Tetrahedron 2016; 72: 4068
- 10 Herron JT, Huie RE. Chem. Phys. Lett. 1980; 76: 322
- 11 Ham J, Yang I, Kang H. J. Org. Chem. 2004; 69: 3236
- 12 Dragoli DR, Burdett MT, Ellman JA. J. Am. Chem. Soc. 2001; 123: 10127
- 13 Smith K, Hou D. J. Org. Chem. 1996; 61: 1530
- 14 Oae S, Kawai T, Furukawa N. Tetrahedron Lett. 1984; 25: 69
- 15 Oae S, Uchida Y. Acc. Chem. Res. 1991; 24: 202
- 16 For a recent review on S(IV)-mediated C–C bond-forming cross-couplings, see: Perry GJ. P, Yorimitsu H. ACS Sustainable Chem. Eng. 2022; 10: 2569
- 17a Chen D.-L, Sun Y, Chen M, Li X, Zhang L, Huang X, Bai Y, Luo F, Peng B. Org. Lett. 2019; 21: 3986
- 17b Šiaučiulis M, Ahlsten N, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2019; 58: 8779
- 17c Morofuji T, Yoshida T, Tsutsumi R, Yamanaka M, Kano N. Chem. Commun. 2020; 56: 13995
- 17d Zhou M, Tsien J, Qin T. Angew. Chem. Int. Ed. 2020; 59: 7372
- 17e Horan AM, Duong VK, McGarrigle EM. Org. Lett. 2021; 23: 9089
- 17f Ritts CB, Hoye TR. J. Am. Chem. Soc. 2021; 143: 13501
- 17g Zhou M, Tsien J, Dykstra R, Hughes JM. E, Peters BK, Merchant RR, Gutierrez O, Qin T. Nat. Chem. 2023; 15: 550
- 18 Dean WM, Šiaučiulis M, Storr TE, Lewis W, Stockman RA. Angew. Chem. Int. Ed. 2016; 55: 10013
- 19 Refvik MD, Froese RD. J, Goddard JD, Pham HH, Pippert MF, Schwan AL. J. Am. Chem. Soc. 1995; 117: 184
- 20 Sandrinelli F, Perrio S, Beslin P. J. Org. Chem. 1997; 62: 8626
- 21a Yu H, Li Z, Bolm C. Org. Lett. 2018; 20: 7104
- 21b Amos SG. E, Nicolai S, Gagnebin A, Le Vaillant F, Waser J. J. Org. Chem. 2019; 84: 3687
- 21c Wang L, Chen M, Zhang J. Org. Chem. Front. 2019; 6: 32
- 22a Caupène C, Boudou C, Perrio S, Metzner P. J. Org. Chem. 2005; 70: 2812
- 22b Maitro G, Vogel S, Sadaoui M, Prestat G, Madec D, Poli G. Org. Lett. 2007; 9: 5493
- 22c Zong L, Ban X, Kee CW, Tan C.-H. Angew. Chem. Int. Ed. 2014; 53: 11849
- 22d Jia T, Zhang M, Jiang H, Wang CY, Walsh PJ. J. Am. Chem. Soc. 2015; 137: 13887
- 22e Wang L, Chen M, Zhang P, Li W, Zhang J. J. Am. Chem. Soc. 2018; 140: 3467
- 22f Schwan AL, Michalski MM, Findlay JP. Phosphorus, Sulfur Silicon Relat. Elem. 2019; 194: 692
- 23 Dai Q, Zhang J. Adv. Synth. Catal. 2018; 360: 1123
- 24 Riddell AB, Smith MR. A, Schwan AL. J. Sulfur Chem. 2022; 43: 540
- 25 Deeming AS, Russell CJ, Willis MC. Angew. Chem. Int. Ed. 2015; 54: 1168
- 26 Under these reaction conditions, the formation of sulfinyl chlorides followed by substitution with amines (see ref. 7) is another plausible mechanism to form sulfinamides.
- 27 For an example of a recently developed sulfur monoxide surrogate, see: Joost M, Nava M, Transue WJ, Martin-Drumel M.-A, McCarthy MC, Patterson D, Cummins CC. Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 5866