Synthesis 2023; 55(19): 3057-3072
DOI: 10.1055/a-2067-4222
short review
Special Issue Honoring Prof. Guoqiang Lin's Contributions to Organic Chemistry

Recent Advances in the Asymmetric Catalytic Synthesis of Phosphonates with an α-Chiral Center

Dezheng Xie
a   College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
b   College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China
,
Ziyi Chen
a   College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
,
Chun-Jiang Wang
a   College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
,
Xiu-Qin Dong
a   College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (22071186, 22071187, 22271226), National Youth Talent Support Program, Natural Science Foundation of Hubei Province (2020CFA036, 2021CFA069), and Fundamental Research Funds for the Central Universities (2042022kf1180).


Virtual Collection honoring Prof. Guoqiang Lin’s Contributions to Organic Chemistry

Abstract

Phosphonates and derivatives with an α-chiral center are of great importance and they are widely distributed in many natural products, pharmaceuticals, and agrochemicals with various bioactive features. Great effort has been made toward the development of efficient methods for their synthesis. In this short review, recent advances in the asymmetric catalytic synthesis of phosphonates with an α-chiral center are summarized, including asymmetric hydrogenation of α,β-unsaturated phosphonates, asymmetric addition of phosphonates to unsaturated electrophiles, and asymmetric addition of nucleophiles to α,β-unsaturated phosphonates. In addition, continuous development of enantioselective catalytic synthetic methods and the application of phosphonates and derivatives with α-chiral center are future prospects.

1 Introduction

2 Asymmetric Hydrogenation of α,β-Unsaturated Phosphonates

3 Asymmetric Addition of Phosphonates to Unsaturated Electrophiles

4 Asymmetric Addition of Nucleophiles to α,β-Unsaturated Phosphonates

5 Conclusion



Publication History

Received: 28 February 2023

Accepted after revision: 31 March 2023

Accepted Manuscript online:
31 March 2023

Article published online:
16 May 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Xue J, Diao J, Cai G, Deng L, Zheng B, Yao Y, Song Y. ACS Med. Chem. Lett. 2013; 4: 278
    • 1b Giannousis PP, Bartlett PA. J. Med. Chem. 1997; 30: 1603
    • 1c Zhang G, Hao G, Pan J, Zhang J, Hu D, Song B. J. Agric. Food Chem. 2016; 64: 4207
    • 1d Patel DV, Rielly-Gauvin K, Ryono DE. Tetrahedron Lett. 1990; 31: 5587
    • 1e Khomutov RM, Osipova TI, Khurs EN, Dzhavakhiya VG. Mendeleev Commun. 2008; 18: 295
    • 1f Bubenik M, Rej R, Nguyen-Ba N, Attardo G, Ouellet F, Chan L. Bioorg. Med. Chem. Lett. 2002; 12: 3063
    • 1g Nguyen-Ba N, Rej R. US 6444656, 2002
    • 2a Zhao D, Wang R. Chem. Soc. Rev. 2012; 41: 2095
    • 2b Kolodiazhnyi OI, Kukhar VP, Kolodiazhna AO. Tetrahedron: Asymmetry 2014; 25: 865
    • 2c Dzięgielewski M, Pięta J, Kamińska E, Albrecht Ł. Eur. J. Org. Chem. 2015; 677
    • 2d Ordóñez M, Viveros-Ceballos JL, Cativiela C, Sayago FJ. Tetrahedron 2015; 71: 1745
    • 2e Maestro A, de Marigorta EM, Palacios F, Vicario J. Asian J. Org. Chem. 2020; 9: 538

      Selected recent examples:
    • 3a Yang F, Xie J.-H, Zhou Q.-L. Acc. Chem. Res. 2023; 56: 332
    • 3b Peters BB. C, Andersson PG. J. Am. Chem. Soc. 2022; 144: 16252
    • 3c Shao B.-R, Shi L, Zhou Y.-G. Chem. Commun. 2021; 57: 12741
    • 3d Cabre A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
    • 3e Liu Y.-H, Dong X.-Q, Zhang X. Youji Huaxue 2020; 40: 1096
    • 3f Wang H, Wen J.-L, Zhang X. Chem. Rev. 2021; 121: 7530
    • 3g Wan F, Tang W.-J. Chin. J. Chem. 2021; 39: 954
    • 3h Wen J.-L, Wang F.-Y, Zhang X. Chem. Soc. Rev. 2021; 50: 3211
    • 3i Kim AN, Stoltz BM. ACS Catal. 2020; 10: 13834
    • 3j Chen J.-Z, Butt NA, Zhang W.-B. Res. Chem. Intermed. 2019; 45: 5959
    • 3k Seo CS. G, Morris RH. Organometallics 2019; 38: 47
    • 3l Xie X.-M, Lu B, Li W.-F, Zhang Z.-G. Coordin. Chem. Rev. 2018; 355: 39
  • 4 Burk MJ, Martinez JP, Feaster JE, Cosford N. Tetrahedron 1994; 50: 4399
  • 5 Goulioukina NS, Bondarenko GN, Lyubimov SE, Davankov VA, Gavrilov KN, Beletskaya IP. Adv. Synth. Catal. 2008; 350: 482
  • 6 Rassukana YV, Onys’ko PP, Kolotylo MV, Sinitsa AD, Łyzwa P, Mikołajczyk M. Tetrahedron Lett. 2009; 50: 288
  • 7 Abe H, Amii H, Uneyama K. Org. Lett. 2001; 3: 313
  • 8 Goulioukina NS, Shergold IA, Bondarenko GN, Ilyin MM, Davankov VA, Beletskaya IP. Adv. Synth. Catal. 2012; 354: 2727
  • 9 Goulioukina NS, Shergold IA, Rybakov VB, Beletskaya IP. Adv. Synth. Catal. 2017; 359: 153
    • 10a Yan Z, Wu B, Gao X, Chen MW, Zhou Y.-G. Org. Lett. 2016; 18: 692
    • 10b Xie HP, Yan Z, Wu B, Hu SB, Zhou Y.-G. Tetrahedron Lett. 2018; 59: 2960
  • 11 Goulioukina NS, Dolgina TM, Bondarenko GN, Beletskaya IP, Ilyin MM, Davankov VA, Pfaltz A. Tetrahedron: Asymmetry 2003; 14: 1397
  • 12 Wang D.-Y, Hu X.-P, Huang J.-D, Deng J, Yu S.-B, Duan Z.-C, Xu X.-F, Zheng Z. Angew. Chem. Int. Ed. 2007; 46: 7810
    • 13a Cheruku P, Diesen J, Andersson PG. J. Am. Chem. Soc. 2008; 130: 5595
    • 13b Cheruku P, Paptchikhine A, Church TL, Andersson PG. J. Am. Chem. Soc. 2009; 131: 8285
  • 14 Matsuda I, Wakamatsu S, Komori K.-I, Makino T, Itoh K. Tetrahedron Lett. 2002; 43: 1043
  • 15 Wang D.-Y, Huang J.-D, Hu X.-P, Deng J, Yu S.-B, Duan Z.-C, Zheng Z. J. Org. Chem. 2008; 73: 2011
  • 16 Wang D.-Y, Hu X.-P, Deng J, Yu S.-B, Duan Z.-C, Zheng Z. J. Org. Chem. 2009; 74: 4408
  • 17 Mazuela J, Paptchikhine A, Pàmies O, Andersson PG, Diéguez M. Chem. Eur. J. 2010; 16: 4567
  • 18 Zhang J, Li Y, Wang Z, Ding K. Angew. Chem. Int. Ed. 2011; 50: 11743
  • 19 Konno T, Shimizu K, Ogata K, Fukuzawa S.-I. J. Org. Chem. 2012; 77: 3318
  • 20 Tao X, Li W, Li X, Xie X, Zhang Z. Org. Lett. 2013; 15: 72
  • 21 Liu X, Han Z, Wang Z, Ding K. Sci. China: Chem. 2014; 57: 1073
  • 22 Henry J.-C, Lavergne D, Ratovelomanana-Vidal V, Genêt J.-P, Beletskaya IP, Dolgina TM. Tetrahedron Lett. 1998; 39: 3473
  • 23 Dong KW, Wang Z, Ding KL. J. Am. Chem. Soc. 2012; 134: 12474
  • 24 Yin X, Chen C, Li X, Dong X.-Q, Zhang X. Org. Lett. 2017; 19: 4375
  • 25 Yang X, Liu G, Xiang X, Xie D, Han J, Han Z, Dong X.-Q. Org. Lett. 2023; 25: 738
  • 26 Sasai H, Arai S, Tahara Y, Shibasaki M. J. Org. Chem. 1995; 60: 6656
  • 27 Arai T, Bougauchi M, Sasai H, Shibasaki M. J. Org. Chem. 1996; 61: 2926
  • 28 Terada M, Ikehara T, Ube H. J. Am. Chem. Soc. 2007; 129: 14112
  • 29 Wang J, Heikkinen LD, Li H, Zu L, Jiang W, Xie H, Wang W. Adv. Synth. Catal. 2007; 349: 1052
  • 30 Rai V, Namboothiri IN. N. Tetrahedron: Asymmetry 2008; 19: 2335
  • 31 Zhu Y, Malerich JP, Rawal VH. Angew. Chem. Int. Ed. 2010; 49: 153
  • 32 Zhao D, Yuan Y, Chan AS. C, Wang R. Chem. Eur. J. 2009; 15: 2738
  • 33 Alcaine A, Marqués-López E, Merino P, Herrera T, Tejero RP. Org. Biomol. Chem. 2011; 9: 2777
  • 34 Sohtome Y, Horitsugi N, Takag R, Nagasawa K. Adv. Synth. Catal. 2011; 353: 2631
  • 35 Li G, Wang L, Yao Z, Xu F. Tetrahedron: Asymmetry 2014; 25: 989
  • 36 Liu S, Shao N, Li F.-Z, Yang X.-C, Wang M.-C. Org. Biomol. Chem. 2017; 15: 9465
  • 37 Nazish M, Jakhar A, Gupta N, Khan NH, Kureshy RI. Synlett 2018; 29: 1385
  • 38 Wang H, Qian H, Zhang J, Ma S. J. Am. Chem. Soc. 2022; 144: 12619
  • 39 Kobayashi S, Kiyohara H, Nakamura Y, Matsubara R. J. Am. Chem. Soc. 2004; 126: 6558
  • 40 Kiyohara H, Matsubara R, Kobayashi S. Org. Lett. 2006; 8: 5333
  • 41 Kiyohara H, Nakamura Y, Matsubara R, Kobayashi S. Angew. Chem. Int. Ed. 2006; 45: 1615
  • 42 Dodda R, Zhao CG. Tetrahedron Lett. 2007; 48: 4339
  • 43 Vicario J, Ezpeleta JM, Palacios F. Adv. Synth. Catal. 2012; 354: 2641
  • 44 Rassukana YV, Yelenich IP, Vlasenko YG, Onys’ko PP. Tetrahedron: Asymmetry 2014; 25: 1234
  • 45 Vicario J, Ortiz P, Ezpeleta JM, Palacios F. J. Org. Chem. 2015; 80: 156
  • 46 Morisaki K, Sawa M, Yonesaki R, Morimoto H, Mashima K, Ohshima TJ. J. Am. Chem. Soc. 2016; 138: 6194
  • 47 Yan Z, Wu B, Gao X, Zhou G.-Y. Chem. Commun. 2016; 52: 10882
  • 48 Yan Z, Gao X, Zhou Y.-G. Chin. J. Catal. 2017; 38: 784
  • 49 Liu YJ, Li JS, Nie J, Ma JA. Org. Lett. 2018; 20: 3643
    • 50a Sun J, Mou C, Liu C, Huang R, Zhang S, Zheng P, Chi YR. Org. Chem. Front. 2018; 5: 2992
    • 50b Sun J, Mou C, Wang Z, He F, Wu J, Chi YR. Org. Lett. 2018; 20: 5969
  • 51 Maestro A, Martinez de Marigorta E, Palacios F, Vicario J. J. Org. Chem. 2019; 84: 1094
  • 52 Inokuma T, Sakakibara T, Someno T, Masui K, Shigenaga A, Otaka A, Yamada K. Chem. Eur. J. 2019; 25: 13829
  • 53 Maestro A, Martinez de Marigorta E, Palacios F, Vicario J. Org. Lett. 2019; 21: 9473
  • 54 Li H, Cheng L, Li G, Xu T, Zhang S, Zeng F. Org. Lett. 2023; 25: 488