Rofo 2023; 195(09): 777-789
DOI: 10.1055/a-2057-0205
Review

Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality

Sarkopenie, mehr als nur Muskelschwund: Bildgebende Verfahren zur Beurteilung von Muskelquantität und -qualität
Violeta Vasilevska Nikodinovska
1   Radiology, Mother Teresa Clinical Centre Skopje, North Macedonia
,
2   Diagnostic Radiology, St. Erasmo Hospital, Ohrid, North Macedonia
› Institutsangaben

Abstract

Background Sarcopenia, a progressive reduction of muscle mass and function, is associated with adverse outcomes in the elderly. Sarcopenia and muscle atrophy are not equal processes. Low muscle strength in association with muscle quantity/quality reduction is currently the optimal method for assessing sarcopenia. There is a practical need for indirect measurement of muscle strength using state-of-the-art imaging techniques.

Methods The following provides a narrative, broad review of all current imaging techniques for evaluating muscles and identifying sarcopenia, including DEXA, CT, MRI, and high-resolution ultrasound, their main strengths, weaknesses, and possible solutions to problems regarding each technique.

Results and Conclusion Well-recognized imaging methods for the assessment of muscle mass are explained, including evaluation with DEXA, CT, and MRI muscle quantity assessment, ultrasound evaluation of muscle thickness and CSA, and their correlations with established muscle mass calculation methods. A special focus is on imaging methods for muscle quality evaluation. Several innovative and promising techniques that are still in the research phase but show potential in the assessment of different properties of muscle quality, including MRI DIXON sequences, MRI spectroscopy, Diffusion Tensor Imaging, ultrasound echo intensity, ultrasound elastography, and speed-of-sound ultrasound imaging are briefly mentioned.

Key Points:

  • Sarcopenia definition includes low muscle strength and low muscle quantity/quality.

  • DEXA is a low-radiation method for whole-body composition measurement in a single image.

  • CT has established cut-off values for muscle quality/quantity evaluation and sarcopenia diagnosis.

  • MRI is the most sophisticated muscle quality assessment method capable of evaluating myosteatosis, myofibrosis, and microstructure.

  • Ultrasound can evaluate muscle quality, including tissue architecture, and elasticity with excellent spatial resolution.

Citation Format

  • Vasilevska Nikodinovska V, Ivanoski S, . Sarcopenia, More Than Just Muscle Atrophy: Imaging Methods for the Assessment of Muscle Quantity and Quality. Fortschr Röntgenstr 2023; 195: 777 – 789

Zusammenfassung

Hintergrund Sarkopenie, eine fortschreitende Abnahme der Muskelmasse und -funktion, ist bei älteren Menschen mit ungünstigem Verlauf verbunden. Sarkopenie und Muskelschwund sind keine gleichwertigen Prozesse. Eine geringe Muskelkraft in Verbindung mit einer Verringerung der Muskelquantität/-qualität ist derzeit das optimale Verfahren, um die Sarkopenie zu beurteilen. Daher besteht ein praktischer Bedarf an einer indirekten Messung der Muskelkraft mit Hilfe modernster bildgebender Verfahren.

Methoden Im Folgenden wird ein umfassender Überblick gegeben über alle aktuellen bildgebenden Verfahren zur Beurteilung von Muskeln und zur Identifizierung der Sarkopenie, darunter DEXA, CT, MRT und hochauflösender Ultraschall, über ihre wichtigsten Stärken und Schwächen sowie mögliche Lösungen für die Probleme der einzelnen Techniken.

Ergebnisse und Schlussfolgerungen Anerkannte bildgebende Verfahren zur Bewertung der Muskelmasse werden erläutert, darunter die Bewertung mit DEXA, CT und MRT zur Bestimmung der Muskelmasse, der Ultraschallbewertung der Muskeldicke und der Querschnittsfläche (CSA) sowie ihrer Korrelationen mit etablierten Verfahren zur Berechnung der Muskelmasse. Ein besonderer Fokus liegt auf den bildgebenden Verfahren zur Bewertung der Muskelqualität. Mehrere innovative und vielversprechende Techniken, die sich noch in der Forschungsphase befinden, aber Potenzial für die Bewertung verschiedener Eigenschaften der Muskelqualität zeigen, wie z. B. MRT-DIXON-Sequenzen, MRT-Spektroskopie, Diffusions-Tensor-Bildgebung, Ultraschall-Echointensität, Ultraschall-Elastografie und der Speed-of-Sound Bildgebung, werden kurz erwähnt.

Kernaussagen

  • Die Definition der Sarkopenie umfasst eine geringe Muskelkraft und eine geringe Muskelquantität/-qualität.

  • DEXA ist ein strahlungsarmes Verfahren zur Bestimmung der Ganzkörperzusammensetzung in einem einzigen Bild.

  • Für die CT wurden Cutoff-Werte für die Bewertung der Muskelqualität/-quantität und die Diagnose der Sarkopenie festgelegt.

  • Die MRT ist die fortschrittlichste Methode zur Beurteilung der Muskelqualität, mit der Myosteatose, Myofibrose und Mikrostruktur bewertet werden können.

  • Ultraschall kann die Muskelqualität, einschließlich der Gewebearchitektur, und die Elastizität mit hervorragender räumlicher Auflösung beurteilen.



Publikationsverlauf

Eingereicht: 28. November 2022

Angenommen: 06. März 2023

Artikel online veröffentlicht:
09. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xia L, Zhao R, Wan Q. et al. Sarcopenia and adverse health-related outcomes: An umbrella review of meta-analyses of observational studies. Cancer Med 2020; 9: 7964-7978
  • 2 Cruz-Jentoft AJ, Baeyens JP, Bauer JM. et al. European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010; 39: 412-423
  • 3 Rosenberg I. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons.  Am J Clin Nutr 1989; 50: 1231-1233
  • 4 Narici MV, Maffulli N. Sarcopenia: characteristics, mechanisms and functional significance. Br Med Bull 2010; 95: 139-159
  • 5 Rozenberg D, Martelli V, Vieira L. et al. Utilization of non-invasive imaging tools for assessment of peripheral skeletal muscle size and composition in chronic lung disease: A systematic review. Respir Med 2017; 131: 125-134
  • 6 Delmonico MJ, Harris TB, Visser M. et al. Health, Aging, and Body. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 2009; 90: 1579-1585
  • 7 Doherty TJ. Invited review: Aging and sarcopenia. J Appl Physiol (1985) 2003; 95: 1717-1727
  • 8 Schaap LA, van Schoor NM, Lips P. et al. Associations of Sarcopenia Definitions, and Their Components, With the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J Gerontol A Biol Sci Med Sci 2018; 73: 1199-1204
  • 9 Goodpaster BH, Park SW, Harris TB. et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study§#ITL#§. J Gerontol A Biol Sci Med Sci 2006; 61: 1059-1064
  • 10 Cruz-Jentoft AJ, Bahat G, Bauer J. et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019; 48: 16-31
  • 11 Costanzo L, De Vincentis A, Di Iorio A. et al. Impact of Low Muscle Mass and Low Muscle Strength According to EWGSOP2 and EWGSOP1 in Community-Dwelling Older People. J Gerontol A Biol Sci Med Sci 2020; 75: 1324-1330
  • 12 Buchman AS, Leurgans SE, Wang T. et al. Motor function is the primary driver of the associations of sarcopenia and physical frailty with adverse health outcomes in community-dwelling older adults. PLoS One 2021; 16: e0245680
  • 13 Beaudart C, Rolland Y, Cruz-Jentoft AJ. et al. Assessment of Muscle Function and Physical Performance in Daily Clinical Practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif Tissue Int 2019; 105: 1-14
  • 14 McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life.  Longev Healthspan 2014; 3: 9
  • 15 Chiles ShafferN, Fabbri E, Ferrucci L. et al. Muscle Quality, Strength, and Lower Extremity Physical Performance in the Baltimore Longitudinal Study of Aging.  J Frailty Aging 2017; 6: 183-187
  • 16 Heymsfield SB, Gonzalez MC, Lu J. et al. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc 2015; 74: 355-366
  • 17 Barbat-Artigas S, Rolland Y, Zamboni M. et al. How to assess functional status: a new muscle quality index. J Nutr Health Aging 2012; 16: 67-77
  • 18 Correa-de-Araujo R, Harris-Love MO, Miljkovic I. et al. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.  Front Physiol 2017; 8: 87
  • 19 Guglielmi G, Ponti F, Agostini M. et al. The role of DXA in sarcopenia. Aging Clin Exp Res 2016; 28: 1047-1060
  • 20 Lee K, Shin Y, Huh J. et al. Recent Issues on Body Composition Imaging for Sarcopenia Evaluation. Korean J Radiol 2019; 20: 205-217
  • 21 Messina C, Maffi G, Vitale JA. et al. Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg 2018; 8: 86-99
  • 22 Mettler Jr FA, Huda W, Yoshizumi TT. et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 2008; 248: 254-263
  • 23 Petak S, Barbu CG, Yu EW. et al. The Official Positions of the International Society for Clinical Densitometry: body composition analysis reporting. J Clin Densitom 2013; 16: 508-519
  • 24 Baumgartner RN, Koehler KM, Gallagher D. et al. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 1998; 147: 755-763
  • 25 Walowski CO, Braun W, Maisch MJ. et al. Reference Values for Skeletal Muscle Mass – Current Concepts and Methodological Considerations. Nutrients 2020; 12: 755
  • 26 Lindqvist C, Brismar TB, Majeed A. et al. Assessment of muscle mass depletion in chronic liver disease: Dual-energy x-ray absorptiometry compared with computed tomography. Nutrition 2019; 61: 93-98
  • 27 Tosato M, Marzetti E, Cesari M. et al. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 2017; 29: 19-27
  • 28 Bredella MA, Ghomi RH, Thomas BJ. et al. Comparison of DXA and CT in the assessment of body composition in premenopausal women with obesity and anorexia nervosa. Obesity (Silver Spring) 2010; 18: 2227-2233
  • 29 Cawthon PM, Peters KW, Shardell MD. et al. Cutpoints for low appendicular lean mass that identify older adults with clinically significant weakness. J Gerontol A Biol Sci Med Sci 2014; 69: 567-575
  • 30 Albano D, Messina C, Vitale J. et al. Imaging of sarcopenia: old evidence and new insights. Eur Radiol 2020; 30: 2199-2208
  • 31 Graffy PM, Liu J, Pickhardt PJ. et al. Deep learning-based muscle segmentation and quantification at abdominal CT: application to a longitudinal adult screening cohort for sarcopenia assessment. Br J Radiol 2019; 92: 20190327
  • 32 Boutin RD, Lenchik L. Value-Added Opportunistic CT: Insights Into Osteoporosis and Sarcopenia. Am J Roentgenol 2020; 215: 582-594
  • 33 Mourtzakis M, Prado CM, Lieffers JR. et al. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 2008; 33: 997-1006
  • 34 Yip C, Dinkel C, Mahajan A. et al. Imaging body composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome.  Insights Imaging 2015; 6: 489-497
  • 35 Amini B, Boyle SP, Boutin RD. et al. Approaches to Assessment of Muscle Mass and Myosteatosis on Computed Tomography: A Systematic Review.  J Gerontol A Biol Sci Med Sci 2019; 74: 1671-1678
  • 36 Ishida Y, Maeda K, Yamanaka Y. et al. Formula for the Cross-Sectional Area of the Muscles of the Third Lumbar Vertebra Level from the Twelfth Thoracic Vertebra Level Slice on Computed Tomography. Geriatrics (Basel) 2020; 5 (03) 47
  • 37 Matsuyama R, Maeda K, Yamanaka Y. et al. Assessing skeletal muscle mass based on the cross-sectional area of muscles at the 12th thoracic vertebra level on computed tomography in patients with oral squamous cell carcinoma. Oral Oncol 2021; 113: 105126
  • 38 Sanders KJC, Degens JHRJ, Dingemans AC. et al. Cross-sectional and longitudinal assessment of muscle from regular chest computed tomography scans: L1 and pectoralis muscle compared to L3 as reference in non-small cell lung cancer. Int J Chron Obstruct Pulmon Dis 2019; 14: 781-789
  • 39 Swartz JE, Pothen AJ, Wegner I. et al. Feasibility of using head and neck CT imaging to assess skeletal muscle mass in head and neck cancer patients. Oral Oncol 2016; 62: 28-33
  • 40 Jung AR, Roh JL, Kim JS. et al. Efficacy of head and neck computed tomography for skeletal muscle mass estimation in patients with head and neck cancer. Oral Oncol 2019; 95: 95-99
  • 41 Prado CM, Lieffers JR, McCargar LJ. et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 2008; 9: 629-635
  • 42 Correa-de-Araujo R, Addison O, Miljkovic I. et al. Myosteatosis in the Context of Skeletal Muscle Function Deficit: An Interdisciplinary Workshop at the National Institute on Aging. Front Physiol 2020; 11: 963
  • 43 Zamboni M, Gattazzo S, Rossi AP. Myosteatosis: a relevant, yet poorly explored element of sarcopenia. Eur Geriatr Med 2019; 10: 5-6
  • 44 Perkisas S, De Cock AM, Verhoeven V. et al. Intramuscular Adipose Tissue and the Functional Components of Sarcopenia in Hospitalized Geriatric Patients.  Geriatrics (Basel) 2017; 2: 1
  • 45 Boutin RD, Kaptuch JM, Bateni CP. et al. Influence of IV contrast administration on CT measures of muscle and bone attenuation: implications for sarcopenia and osteoporosis evaluation. Am J Roentgenol 2016; 207: 1046-1054
  • 46 Ackermans LLGC, Volmer L, Wee L. et al. Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients. Sensors (Basel) 2021; 21: 2083
  • 47 Paris MT, Tandon P, Heyland DK. et al. Automated body composition analysis of clinically acquired computed tomography scans using neural networks. Clin Nutr 2020; 39: 3049-3055
  • 48 Baracos V, Kazemi-Bajestani SM. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int J Biochem Cell Biol 2013; 45: 2302-2308
  • 49 Su H, Ruan J, Chen T. et al. CT-assessed sarcopenia is a predictive factor for both long-term and short-term outcomes in gastrointestinal oncology patients: a systematic review and meta-analysis. Cancer Imaging 2019; 19: 82
  • 50 Xia W, Barazanchi AWH, MacFater WS. et al. The impact of computed tomography-assessed sarcopenia on outcomes for trauma patients – a systematic review and meta-analysis§#ITL#§. Injury 2019; 50: 1565-1576
  • 51 Lee CM, Kang J. Prognostic impact of myosteatosis in patients with colorectal cancer: a systematic review and meta-analysis.  J Cachexia Sarcopenia Muscle 2020; 11: 1270-1282
  • 52 Martin L, Gioulbasanis I, Senesse P. et al. Cancer-Associated Malnutrition and CT-Defined Sarcopenia and Myosteatosis Are Endemic in Overweight and Obese Patients. JPEN J Parenter Enteral Nutr 2020; 44: 227-238
  • 53 Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention.  JPEN J Parenter Enteral Nutr 2014; 38: 940-953
  • 54 Hepple RT. Muscle atrophy is not always sarcopenia. J Appl Physiol (1985) 2012; 113: 677-679
  • 55 Codari M, Zanardo M, di Sabato ME. et al. MRI-Derived Biomarkers Related to Sarcopenia: A Systematic Review. J Magn Reson Imaging 2020; 51: 1117-1127
  • 56 Shen W, Punyanitya M, Wang Z. et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol (1985) 2004; 97: 2333-2338
  • 57 Ogawa M, Lester R, Akima H. et al. Quantification of intermuscular and intramuscular adipose tissue using magnetic resonance imaging after neurodegenerative disorders.  Neural Regen Res 2017; 12: 2100-2105
  • 58 Sinelnikov A, Qu C, Fetzer DT. et al. Measurement of skeletal muscle area: Comparison of CT and MR imaging. Eur J Radiol 2016; 85: 1716-1721
  • 59 Wang FZ, Sun H, Zhou J. et al Reliability and Validity of Abdominal Skeletal Muscle Area Measurement Using Magnetic Resonance Imaging. Acad Radiol 2020; 28 S1076-6332(20)30552-3. DOI: 10.1016/j.acra.2020.09.013.
  • 60 Faron A, Sprinkart AM, Kuetting DLR. et al. Body composition analysis using CT and MRI: intra-individual intermodal comparison of muscle mass and myosteatosis. Sci Rep 2020; 10: 11765
  • 61 Beer L, Bastati N, Ba-Ssalamah A. et al. MRI-defined sarcopenia predicts mortality in patients with chronic liver disease. Liver Int 2020; 40: 2797-2807
  • 62 Engelke K, Museyko O, Wang L. et al. Quantitative analysis of skeletal muscle by computed tomography imaging-State of the art.  J Orthop Translat 2018; 15: 91-103
  • 63 Giraudo C, Cavaliere A, Lupi A. et al. Established paths and new avenues: a review of the main radiological techniques for investigating sarcopenia. Quant Imaging Med Surg 2020; 10: 1602-1613
  • 64 Huber FA, Del GrandeF, Rizzo S. et al. MRI in the assessment of adipose tissues and muscle composition: how to use it. Quant Imaging Med Surg 2020; 10: 1636-1649
  • 65 Schlaeger S, Inhuber S, Rohrmeier A. et al. Association of paraspinal muscle water-fat MRI-based measurements with isometric strength measurements. Eur Radiol 2019; 29: 599-608
  • 66 Boesch C. Musculoskeletal spectroscopy. J Magn Reson Imaging 2007; 25: 321-338
  • 67 Grimm A, Meyer H, Nickel MD. et al. A Comparison between 6-point Dixon MRI and MR Spectroscopy to Quantify Muscle Fat in the Thigh of Subjects with Sarcopenia. J Frailty Aging 2019; 8: 21-26
  • 68 Hinkley JM, Coen PM. Muscle phosphorus metabolites in sarcopenia.  Aging (Albany NY) 2020; 12: 15880-15881
  • 69 Funai K, Summers SA, Rutter J. Reign in the membrane: How common lipids govern mitochondrial function. Curr Opin Cell Biol 2020; 63: 162-173
  • 70 Hinkley JM, Cornnell HH, Standley RA. et al. Older adults with sarcopenia have distinct skeletal muscle phosphodiester, phosphocreatine, and phospholipid profiles. Aging Cell 2020; 19: e13135
  • 71 Zoico E, Corzato F, Bambace C. et al. Myosteatosis and myofibrosis: relationship with aging, inflammation and insulin resistance. Arch Gerontol Geriatr 2013; 57: 411-416
  • 72 Boutin RD, Yao L, Canter RJ. et al. Sarcopenia: Current Concepts and Imaging Implications. Am J Roentgenol 2015; 205: W255-266
  • 73 Sinha U, Malis V, Csapo R. et al. Age-related differences in strain rate tensor of the medial gastrocnemius muscle during passive plantarflexion and active isometric contraction using velocity encoded MR imaging: potential index of lateral force transmission. Magn Reson Med 2015; 73: 1852-1863
  • 74 Azzabou N, Hogrel JY, Carlier PG. NMR based biomarkers to study age-related changes in the human quadriceps. Exp Gerontol 2015; 70: 54-60
  • 75 Oudeman J, Nederveen AJ, Strijkers GJ. et al. Techniques and applications of skeletal muscle diffusion tensor imaging: A review. J Magn Reson Imaging 2016; 43: 773-788
  • 76 Galbán CJ, Maderwald S, Stock F. et al. Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol A Biol Sci Med Sci 2007; 62: 453-458
  • 77 Farrow M, Biglands J, Tanner SF. et al. The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: an association with frailty and muscle strength. Aging Clin Exp Res 2021; 33: 291-301
  • 78 Erlandson MC, Lorbergs AL, Mathur S. et al. Muscle analysis using pQCT, DXA and MRI. Eur J Radiol 2016; 85: 1505-1511
  • 79 Abe T, Thiebaud RS, Loenneke JP. et al. Prediction and validation of DXA-derived appendicular lean soft tissue mass by ultrasound in older adults. Age (Dordr) 2015; 37: 114
  • 80 Hida T, Ando K, Kobayashi K. et al. <Editors' Choice> Ultrasound measurement of thigh muscle thickness for assessment of sarcopenia. Nagoya J Med Sci 2018; 80: 519-527
  • 81 Souza VA, Oliveira D, Cupolilo EN. et al. Rectus femoris muscle mass evaluation by ultrasound: facilitating sarcopenia diagnosis in pre-dialysis chronic kidney disease stages. Clinics (Sao Paulo) 2018; 73: e392
  • 82 Sanada K, Kearns CF, Midorikawa T. et al. Prediction and validation of total and regional skeletal muscle mass by ultrasound in Japanese adults. Eur J Appl Physiol 2006; 96: 24-31
  • 83 Ivanoski S, Vasilevska Nikodinovska V. Future Ultrasound Biomarkers for Sarcopenia: Elastography, Contrast-Enhanced Ultrasound, and Speed of Sound Ultrasound Imaging. Semin Musculoskelet Radiol 2020; 24: 194-200
  • 84 Akagi R, Suzuki M, Kawaguchi E. et al. Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch Gerontol Geriatr 2018; 75: 185-190
  • 85 Janssen I, Heymsfield SB, Wang ZM. et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985) 2000; 89: 81-88
  • 86 Minetto MA, Caresio C, Menapace T. et al. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults. PM R 2016; 8: 453-462
  • 87 Narici MV, Franchi MV, Maganaris CN. Muscle structural assembly and functional consequences. J Exp Biol 2015; 219: 276-284
  • 88 Ward SR, Eng CM, Smallwood LH. et al. Are current measurements of lower extremity muscle architecture accurate?.  Clin Orthop Relat Res 2009; 467: 1074-1082
  • 89 Roberts TJ, Eng CM, Sleboda DA. et al. The Multi-Scale, Three-Dimensional Nature of Skeletal Muscle Contraction. Physiology (Bethesda) 2019; 34: 402-408
  • 90 Mirón Mombiela R, Vucetic J, Rossi F. et al. Ultrasound Biomarkers for Sarcopenia: What Can We Tell So Far?. Semin Musculoskelet Radiol 2020; 24: 181-193
  • 91 Narici MV, Maganaris CN, Reeves ND. et al. Effect of aging on human muscle architecture. J Appl Physiol (1985) 2003; 95: 2229-2234
  • 92 Ticinesi A, Meschi T, Narici MV. et al. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J Am Med Dir Assoc 2017; 18: 290-300
  • 93 Mirón Mombiela R, Facal de Castro F, Moreno P. et al. Ultrasonic Echo Intensity as a New Noninvasive In Vivo Biomarker of Frailty. J Am Geriatr Soc 2017; 65: 2685-2690
  • 94 Watanabe Y, Yamada Y, Fukumoto Y. et al. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging 2013; 8: 993-998
  • 95 Stringer HJ, Wilson D. The Role of Ultrasound as a Diagnostic Tool for Sarcopenia.  J Frailty Aging 2018; 7: 258-261
  • 96 Akima H, Hioki M, Yoshiko A. et al. Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids. Magn Reson Imaging 2016; 34: 397-403
  • 97 Harris-Love MO, Avila NA, Adams B. et al. The Comparative Associations of Ultrasound and Computed Tomography Estimates of Muscle Quality with Physical Performance and Metabolic Parameters in Older Men. J Clin Med 2018; 7: 340
  • 98 Isaka M, Sugimoto K, Yasunobe Y. et al. The Usefulness of an Alternative Diagnostic Method for Sarcopenia Using Thickness and Echo Intensity of Lower Leg Muscles in Older Males. J Am Med Dir Assoc 2019; 20: 1185.e1-1185.e8
  • 99 Bastijns S, De Cock AM, Vandewoude M. et al. Usability and Pitfalls of Shear-Wave Elastography for Evaluation of Muscle Quality and Its Potenzial in Assessing Sarcopenia: A Review. Ultrasound Med Biol 2020; 46: 2891-2907
  • 100 Saito A, Wakasa M, Kimoto M. et al. Age-related changes in muscle elasticity and thickness of the lower extremities are associated with physical functions among community-dwelling older women. Geriatr Gerontol Int 2019; 19: 61-65
  • 101 Sanabria SJ, Martini K, Freystätter G. et al. Speed of sound ultrasound: a pilot study on a novel technique to identify sarcopenia in seniors. Eur Radiol 2019; 29: 3-12
  • 102 Sanabria SJ, Goksel O, Martini K. et al. Breast-density assessment with hand-held ultrasound: A novel biomarker to assess breast cancer risk and to tailor screening?. Eur Radiol 2018; 28: 3165-3175
  • 103 Perkisas S, Baudry S, Bauer J. et al. Application of ultrasound for muscle assessment in sarcopenia: towards standardized measurements.  Eur Geriatr Med  2018; 9: 739-757