Synthesis 2023; 55(21): 3670-3684
DOI: 10.1055/a-2054-0482
special topic
C–H Bond Functionalization of Heterocycles

Photocatalyst-Free, Visible-Light-Mediated C–H Perfluoroalkylation of Quinazolin-4(3H)-ones with perfluoroalkyl Iodides

Thomas Delouche
a   Univ Rouen Normandie, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
,
Abdoul Gadiry-Diallo
a   Univ Rouen Normandie, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
,
a   Univ Rouen Normandie, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
,
Sensuke Ogoshi
b   Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
,
Corinne Fruit
a   Univ Rouen Normandie, INSA Rouen, CNRS, COBRA UMR 6014, 76000 Rouen, France
› Author Affiliations
The University of Rouen Normandy, Institut National des Sciences Appliquées Rouen (INSA) Rouen Normandy, the Centre National de la Recherche Scientifique (CNRS), European Regional Development Fund (ERDF), Labex SynOrg (ANR-11-LABX-0029), Carnot Institute I2C, the graduate school for research XL-Chem (ANR-18-EURE-0020 XL CHEM), and Région Normandie (RIN Program) are acknowledged for financial support.


Abstract

A practical and sustainable photocatalyst-free protocol for photoinduced synthesis of perfluoroalkylated quinazolin-4(3H)-ones is described starting from quinazolin-4(3H)-ones. A wide range of substituted or fused-quinazolinones is found to be compatible, providing the corresponding mono- and bis-perfluoroalkylated compounds in moderate yields. This visible-light-mediated C–H perfluoroalkylation allows an environmentally friendly and straightforward access to an array of unprecedented functionalized quinazolinone scaffolds, presenting attractive features for drug discovery. Control experiments demonstrated that a radical mechanism is involved in the reaction mechanism.

Supporting Information



Publication History

Received: 31 January 2023

Accepted after revision: 14 March 2023

Accepted Manuscript online:
14 March 2023

Article published online:
11 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 1b Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 1c Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 1d Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 1e Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Chem. Rev. 2016; 116: 422
    • 1f Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
    • 1g Britton R, Gouverneur V, Lin J.-H, Meanwell M, Ni C, Pupo G, Xiao JC, Hu J. Nat. Rev. Methods Primers 2021; 1: 47
    • 1h Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Chem. Rev. 2022; 122: 167
    • 2a Prchalová E, Štěpánek O, Smrček S, Kotora M. Future Med. Chem. 2014; 6: 1201
    • 2b Richardson P. Expert Opin. Drug Discovery 2016; 11: 983
    • 2c Meanwell NA. J. Med. Chem. 2018; 61: 5822
    • 2d Bentler P, Erdeljac N, Bussmann K, Ahlqvist M, Knerr L, Bergander K, Daniliuc CG, Gilmour R. Org. Lett. 2019; 21: 7741

      For representative papers, see:
    • 3a Kremlev MM, Tyrra W, Mushta AI, Naumann D, Yagupolskii YL. J. Fluorine Chem. 2010; 131: 212
    • 3b Popov I, Lindeman S, Daugulis O. J. Am. Chem. Soc. 2011; 133: 9286
    • 3c Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
    • 3d Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2013; 135: 12584
    • 3e Mormino MG, Fier PS, Hartwig JF. Org. Lett. 2014; 16: 1744
    • 3f Serizawa H, Aikawa K, Mikami K. Org. Lett. 2014; 16: 3456
    • 3g Aikawa K, Nakamura Y, Yokota Y, Toya W, Mikami K. Chem. Eur. J. 2015; 21: 96
    • 3h Kato H, Hirano K, Kurauchi D, Toriumi N, Uchiyama M. Chem. Eur. J. 2015; 21: 3895
    • 3i Huang Y, Ajitha MJ, Huang K.-W, Zhang Z, Weng Z. Dalton Trans. 2016; 8468
    • 3j Bao X, Liu L, Li J, Fan S. J. Org. Chem. 2018; 83: 463
    • 3k Mestre J, Castillón S, Boutureira O. J. Org. Chem. 2019; 84: 15087
    • 3l Zhao X, MacMillan DW. C. J. Am. Chem. Soc. 2020; 142: 19480
    • 3m Zou Z, Li H, Huang M, Zhang W, Zhi Z, Wang Y, Pan Y. Org. Lett. 2021; 23: 8252

      For selected reviews, see:
    • 4a Postigo A. Can. J. Chem. 2012; 90: 493
    • 4b Barata-Vallejo S, Bonesi SM, Postigo A. RSC Adv. 2015; 5: 62498
    • 4c Baguia H, Evano G. Chem. Eur. J. 2022; 28: e2022009
    • 4d Fruit C. Direct C–H Difluoroalkylation and Perfluoroalkylation of Heteroarenes. In Handbook of CH-Functionalization. Maiti D. Wiley; Weinheim: 2022. DOI DOI: 10.1002/9783527834242.chf0232

    • For representative papers on metal-catalyzed C–H perfluoroalkylation, see:
    • 4e Zhou Q.-L, Huang Y.-Z. J. Fluorine Chem. 1989; 43: 385
    • 4f Baciocchi E, Muraglia E. Tetrahedron Lett. 1993; 34: 3799
    • 4g Kamigata N, Ohtsuka T, Fukushima T, Yoshida M, Shimizu T. J. Chem. Soc., Perkin Trans. 1 1994; 1339
    • 4h Kamigata N, Ohtsuka T, Yoshida M, Shimizu T. Synth. Commun. 1994; 24: 2049
    • 4i Huang X, Chen Q. J. Org. Chem. 2001; 66: 4651
    • 4j Loy RN, Sanford MS. Org. Lett. 2011; 13: 2548
    • 4k Sladojevich F, McNeill E, Börgel J, Zheng S.-L, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 3712
    • 4l Jin L.-K, Lua G.-P, Cai C. Org. Chem. Front. 2016; 3: 1309
    • 4m Li Y, Neumann H, Beller M. Chem. Eur. J. 2020; 26: 6784
    • 4n Cui L, Ono T, Morita Y, Hisaeda Y. Dalton Trans. 2020; 7546
    • 4o Sindhe H, Chaudhary B, Chowdhury N, Kamble A, Kumar V, Lad A, Sharma S. Org. Chem. Front. 2022; 9: 1742
    • 4p For a recent review on difluoromethylation, see: Sap JB. I, Meyer CF, Straathof NJ. W, Iwumene N, am Ende CW, Trabanco AA, Gouverneur V. Chem. Soc. Rev. 2021; 317: 8214
    • 5a Burton DJ, Yang Z.-Y. Tetrahedron 1992; 48: 189
    • 5b Uneyama K, Katagiri T, Amii H. Acc. Chem. Res. 2008; 41: 817
    • 5c Wang X, Hirano K, Kurauchi D, Kato H, Toriumi N, Takita R, Uchiyama M. Chem. Eur. J. 2015; 21: 10993

      For selected examples, see:
    • 6a He L, Natte K, Rabeah J, Brückner A, Taeschler AC, Beller M. Angew. Chem. Int. Ed. 2015; 54: 4320
    • 6b Zhang S, Rotta-Loria N, Weniger F, Rabeah J, Neumann H, Taeschler C, Beller M. Chem. Commun. 2019; 55: 6723
    • 6c Zhang S, Weniger F, Kreyenschulte CR, Lund H, Bartling S, Neumann H, Ellinger S, Taeschler C, Beller M. Catal. Sci. Technol. 2020; 10: 1731
    • 7a Castillo-Pazos DJ, Lasso JD, Li C.-J. Org. Biomol. Chem. 2021; 19: 7116

    • For recent reviews focused on electrochemically driven radical fluoroalkylation, see:
    • 7b Zou Z, Zhang W, Wang Y, Pan Y. Org. Chem. Front. 2021; 8: 2786
    • 7c Kisukuri CM, Fernandes VA, Delgado JA. C, Häring AP, Paixão MW, Waldvogel SR. Chem. Rec. 2021; 21: 2502

      For selected reviews, see:
    • 8a Chatterjee T, Iqbal N, You Y, Cho EJ. Acc. Chem. Res. 2016; 49: 2284
    • 8b Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
    • 8c Tavakolian M, Hosseini-Sarvari M. ACS Sustainable Chem. Eng. 2021; 9: 4296

      For selected papers using photoredox catalyst, see:
    • 9a Straathof NJ. W, Osch D, Schouten A, Wang X, Schouten J, Hessel V, Noël T. J. Flow Chem. 2014; 4: 12
    • 9b Straathof NJ. W, Gemoets HP. L, Wang X, Schouten JC, Hessel V, Noël T. ChemSusChem 2014; 7: 1612
    • 9c Hossain MJ, Ono T, Wakiya K, Hisaeda Y. Chem. Commun. 2017; 53: 10878
    • 9d Yang B, Yu D, Xu X.-H, Qing F.-L. ACS Catal. 2018; 8: 2839
    • 9e Lantaño B, Barata-Vallejo S, Postigo A. Org. Biomol. Chem. 2018; 16: 6718
    • 9f Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Adv. Synth. Catal. 2019; 361: 5490
    • 9g Yerien DE, Cooke MV, García Vior MC, Barata-Vallejo S, Postigo A. Org. Biomol. Chem. 2019; 17: 3741
    • 9h Han J, Wang G, Sun J, Li H, Duan G, Li F, Xia C. Catal. Commun. 2019; 118: 81
    • 9i Cui L, Ono T, Hossain MJ, Hisaeda Y. RSC Adv. 2020; 10: 24862

    • For selected papers focused on photocatalyst-free conditions, see:
    • 9j Lantaño B, Barata-Vallejo S, Torviso MR, Bonesi SM, Argüello JE, Postigo A. J. Fluorine Chem. 2014; 161: 149
    • 9k Wang Y, Wang J, Li GX, He G, Chen G. Org. Lett. 2017; 19: 1442
    • 9l Arockiam PB, Guillemard L, Wencel-Delord J. Adv. Synth. Catal. 2017; 359: 2571
    • 9m Huang Y, Lei Y.-Y, Zhao L, Gu J, Yao Q, Wang Z, Li X.-F, Zhang X, He C.-Y. Chem. Commun. 2018; 54: 13662
    • 9n Li Y, Rao M, Fan Z, Nian B, Yuan Y, Cheng J. Tetrahedron Lett. 2019; 60: 151046
    • 9o Mao T, Ma M.-J, Zhao L, Xue D.-P, Yu Y, Gu J, He C.-Y. Chem. Commun. 2020; 56: 1815
    • 9p Huang J, Wu D, Bai X, Cai P, Zhu W.-G. New J. Chem. 2021; 15: 4925
    • 10a Michael JP. Nat. Prod. Rep. 2003; 20: 476
    • 10b Hanrahan P, Bell J, Bottomley G, Bradley S, Clarke P, Curtis E, Davis S, Dawson G, Horswill J, Keily J, Moore G, Rasamison C, Bloxham J. Bioorg. Med. Chem. Lett. 2012; 22: 2271
    • 10c Kshirsagara UA. Org. Biomol. Chem. 2015; 13: 9336
    • 10d Schenkel LB, Olivieri PR, Boezio AA, Deak HL, Emkey R, Graceffa RF, Gunaydin H, Guzman-Perez A, Lee JH, Teffera Y, Wang W, Youngblood BD, Yu VL, Zhang M, Gavva NR, Lehto SG, Geuns-Meyer S. J. Med. Chem. 2016; 59: 2794
    • 10e Zhang J, Liu J, Ma Y, Ren D, Cheng P, Zhao J, Zhang F, Yao Y. Bioorg. Med. Chem. Lett. 2016; 26: 2273
    • 10f Bouley R, Ding D, Peng Z, Bastian M, Lastochkin E, Song W, Suckow MA, Schroeder VA, Wolter WR, Mobashery S, Chang M. J. Med. Chem. 2016; 59: 5011
    • 10g Long S, Resende DI. S. P, Kijjoa A, Silva AM. S, Pina A, Fernández-Marcelo T, Vasconcelos MH, Sousa E, Pinto MM. M. Mar. Drugs 2018; 16: 261
    • 10h Hameed A, Al-Rashida M, Uroos M, Ali SA, Arshia, Ishtiaq M, Khan KM. Expert Opin. Ther. Pat. 2018; 28: 281
    • 10i Badolato M, Aiello F, Neamati N. RSC Adv. 2018; 8: 20894
    • 10j Gatadi S, Lakshmi TV, Nanduri S. Eur. J. Med. Chem. 2019; 170: 157
    • 10k Karan R, Agarwal P, Sinha M, Mahato N. ChemEngineering 2021; 5: 73
    • 10l Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. J. Mol. Struct. 2021; 1237: 130369
    • 10m Plescia F, Maggio B, Daidone G, Raffa D. Eur. J. Med. Chem. 2021; 213: 113070
    • 10n Haghighijoo Z, Zamani L, Moosavi F, Emami S. Eur. J. Med. Chem. 2022; 227: 113949
    • 11a Godeau J, Harari M, Laclef S, Deau E, Fruit C, Besson T. Eur. J. Org. Chem. 2015; 7705
    • 11b Laclef S, Harari M, Godeau J, Schmitz-Afonso I, Bischoff L, Hoarau C, Levacher V, Fruit C, Besson T. Org. Lett. 2015; 17: 1700
    • 11c Mao S, Luo K, Wang L, Zhao H.-Y, Shergalis A, Xin M, Neamati N, Jin Y, Zhang S.-Q. Org. Lett. 2019; 21: 2365
    • 11d Li F, Gu X.-J, Zeng C.-E, Li X, Liu B, Huang G.-L. Eur. J. Org. Chem. 2020; 2923
    • 11e Ghosh P, Ganguly B, Das S. Org. Biomol. Chem. 2020; 18: 4497
    • 11f Akulov AA, Varaksin MV, Mampuys P, Charushin VN, Chupakhin ON, Maes BU. W. Org. Biomol. Chem. 2021; 19: 297
    • 11g Srinath R, Manna A, Shee S, Pathi VB, Ghosh S, Khamaru K, Maiti NC, Banerji B. Org. Lett. 2021; 23: 9365
    • 12a Greiner J, Pastor R, Cambon A. J. Fluorine Chem. 1981; 18: 185
    • 12b Hughes LR, Jackman AL, Oldfield J, Smith RC, Burrows KD, Marsham PR, Bishop JA. M, Jones TR, O’Connor EM, Calvert AH. J. Med. Chem. 1990; 33: 3060
    • 12c Palanki MS. S, Erdman PE, Ren M, Suto M, Bennett BL, Manning A, Ransone L, Spooner C, Desai S, Ow A, Totsuka R, Tsao P, Toriumi W. Bioorg. Med. Chem. Lett. 2003; 13: 4077
    • 12d Buscemi S, Pace A, Piccionello AP, Pibiri I, Vivona N. Heterocycles 2004; 63: 1619
    • 12e Gigante A, Canela M.-D, Delang L, Priego E.-M, Camarasa M.-J, Querat G, Neyts J, Leyssen P, Pérez-Pérez M.-J. J. Med. Chem. 2014; 57: 4000
    • 12f Okuda K, Takarada S, Hirota T, Sasaki KJ. J. Heterocycl. Chem. 2015; 52: 780
    • 12g Almeida S, Marti R, Vanoli E, Abele S, Tortoioli S. J. Org. Chem. 2018; 83: 5104
    • 12h Mishra M, Mishra VK, Kashaw V, Agrawal RK, Kashaw SK. J. Adv. Sci. Res. 2020; 11: 85
    • 12i Peng J.-W, Yin X.-D, Li H, Ma K.-Y, Zhang Z.-J, Zhou R, Wang Y.-L, Hu G.-F, Liu Y.-Q. J. Agric. Food Chem. 2021; 69: 4604
    • 12j Nallathamby N, Phan C.-W, Sova M, Saso L, Sabaratnam V. Med. Chem. 2021; 17: 623

    • For recent papers on the photo-induced synthesis of perfluoroalkyl-substituted quinazolin-4-ones, see:
    • 12k Sun B, Huang P, Yan Z, Shi X, Tang X, Yang J, Jin C. Org. Lett. 2021; 23: 1026
    • 12l Yang J, Sun B, Ding H, Huang P.-Y, Tang X.-L, Shi R.-C, Yan Z.-Y, Yu C.-M, Jin C. Green Chem. 2021; 23: 575
    • 12m Gui Q.-W, Teng F, Yang H, Xun C, Huang W.-J, Lu Z.-Q, Zhu M.-X, Ouyang W.-T, He W.-M. Chem. Asian J. 2022; 17: e202101139
    • 13a Mulliken RS. J. Am. Chem. Soc. 1952; 74: 811
    • 13b Arceo EI, Jurberg D, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
    • 13c Postigo A. Eur. J. Org. Chem. 2018; 6391
    • 13d Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
    • 13e Correia JT. M, Silva GP, Kisukuri CM, André E, Pires B, Carneiro PS, Paixão MW. J. Org. Chem. 2020; 85: 9820
    • 13f Grondin J, Aupetit C, Vincent J.-M, Méreau R, Tassaing T. J. Mol. Liq. 2021; 333: 115993
    • 13g Sun B, Shi X, Zhuang X, Huang P, Shi R, Zhu R, Jin C. Org. Lett. 2021; 23: 1862
  • 14 Sun B, Tang X, Shi R, Yan Z, Li B, Tang C, Jin C, Wu CL, Shen RP. Asian J. Org. Chem. 2021; 10: 3390
    • 15a Nappi M, Bergozini G, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 4921
    • 15b Wozniak Ł, Murphy JJ, Melchiorre M. J. Am. Chem. Soc. 2015; 137: 5678
  • 16 Curran DP. Angew. Chem. Int. Ed. 1998; 37: 1174
    • 17a Alexandre F.-R, Berecibar A, Besson T. Tetrahedron Lett. 2002; 43: 3911
    • 17b Hédou D, Guillon R, Lecointe C, Logé C, Chosson E, Besson T. Tetrahedron 2013; 69: 3182
    • 17c Couly F, Dubouilh-Benard C, Besson T, Fruit C. Synthesis 2017; 49: 4615
  • 18 Lepri S, Ceccarelli M, Milani N, Tortorella S, Cucco A, Valeri A, Goracci L, Brink A, Cruciani G. Proc. Natl. Acad. Sci. USA 2017; 114: E3178