Synlett 2023; 34(15): 1824-1828
DOI: 10.1055/a-2053-1750
letter

Silver-Catalyzed Synthesis of Nitriles from Carboxylic Acids and Cyanamides

Mingsheng Li
,
Lingjian Zi
,
Xinqaing Chen
,
Jing Zhang
We are grateful for financial support from the National Natural Science Foundation of China (22071185, 22271224), the Fundamental Research Funds for the Central Universities (2042019kf0008), and Wuhan University startup funding.


Abstract

A concise and practical silver-catalyzed nitrogen-atom-transfer protocol was developed to access versatile nitriles from ubiquitous carboxylic acids with N-cyano-N-phenyl-p-toluenesulfonamide. This protocol complements the established carboxylic acids-to-nitriles conversion methods, which suffer from laborious steps, high temperatures (≥200 °C), or limited substrate scopes. This approach operates broadly across diverse aryl, alkenyl, and primary-, secondary-, or tertiary-alkyl carboxylic acids.

Supporting Information



Publication History

Received: 10 February 2023

Accepted after revision: 13 March 2023

Accepted Manuscript online:
13 March 2023

Article published online:
12 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Enders D, Shilvock JP. Chem. Soc. Rev. 2000; 29: 359
    • 1b Fleming FF, Wang Q. Chem. Rev. 2003; 103: 2035
    • 1c Lindsay-Scott PJ, Gallagher PT. Tetrahedron Lett. 2017; 58: 2629
    • 1d Pearson-Long MS. M, Boeda F, Bertus P. Adv. Synth. Catal. 2017; 359: 179
    • 1e An BK, Gierschner J, Park SY. Acc. Chem. Res. 2012; 45: 544
    • 1f Chen Y, Peng Z, Tao Y, Wang Z, Lu P, Wang Y. Dyes Pigm. 2019; 161: 44
    • 1g Jimenez ER, Rodríguez H. J. Mater. Sci. 2020; 55: 1366
    • 1h Lin S, Gutierrez-Cuevas KG, Zhang X, Guo J, Li Q. Adv. Funct. Mater. 2020; 31: 2007957
    • 2a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 2b Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408
    • 2c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 2d Yu H, Cheng Y, Xu M, Song Y, Luo Y, Li B. J. Agric. Food Chem. 2016; 64: 9586
    • 3a Demko ZP, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2113
    • 3b Garduño JA, García JJ. ACS Catal. 2020; 10: 8012
    • 4a Wang T, Jiao N. Acc. Chem. Res. 2014; 47: 1137
    • 4b Ping Y, Ding Q, Peng Y. ACS Catal. 2016; 6: 5989
    • 4c Yan G, Zhang Y, Wang J. Adv. Synth. Catal. 2017; 359: 4068
    • 4d Wu W.-B, Yu J.-S, Zhou J. ACS Catal. 2020; 10: 7668
    • 5a Hodgson HH. Chem. Rev. 1947; 40: 251
    • 5b Rosenmund KW, Struck E. Ber. Dtsch. Chem. Ges. 2006; 52: 1749
  • 6 Mowry DT. Chem. Rev. 1948; 42: 189
    • 7a Anbarasan P, Schareina T, Beller M. Chem. Soc. Rev. 2011; 40: 5049
    • 7b Delcaillau T, Woenckhaus-Alvarez A, Morandi B. Org. Lett. 2021; 23: 7018
    • 8a Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2011; 50: 519
    • 8b Reeves JT, Malapit CA, Buono FG, Sidhu KP, Marsini MA, Sader CA, Fandrick KR, Busacca CA, Senanayake CH. J. Am. Chem. Soc. 2015; 137: 9481
    • 8c Malapit CA, Reeves JT, Busacca CA, Howell AR, Senanayake CH. Angew. Chem. Int. Ed. 2016; 55: 326
    • 9a Shi S, Szostak M. Org. Lett. 2017; 19: 3095
    • 9b Chatupheeraphat A, Liao HH, Lee SC, Rueping M. Org. Lett. 2017; 19: 4255
    • 9c Wang Z, Wang X, Ura Y, Nishihara Y. Org. Lett. 2019; 21: 6779
    • 10a Zhao W, Montgomery J. J. Am. Chem. Soc. 2016; 138: 9763
    • 10b Long J, Yu R, Gao J, Fang X. Angew. Chem. Int. Ed. 2020; 59: 6785
    • 10c Xing Y, Yu R, Fang X. Org. Lett. 2020; 22: 1008
  • 12 Hua M, Song J, Huang X, Liu H, Fan H, Wang W, He Z, Liu Z, Han B. Angew. Chem. Int. Ed. 2021; 60: 21479
    • 13a McManus JB, Nicewicz DA. J. Am. Chem. Soc. 2017; 139: 2880
    • 13b Chen H, Mondal A, Wedi P, van Gemmeren M. ACS Catal. 2019; 9: 1979
    • 13c Xu S, Teng J, Yu J.-T, Sun S, Cheng J. Org. Lett. 2019; 21: 9919
    • 14a Liu RY, Bae M, Buchwald SL. J. Am. Chem. Soc. 2018; 140: 1627
    • 14b Shipilovskikh SA, Vaganov VY, Denisova EI, Rubtsov AE, Malkov AV. Org. Lett. 2018; 20: 728
    • 14c Al-Huniti MH, Rivera-Chávez J, Colón KL, Stanley JL, Burdette JE, Pearce CJ, Oberlies NH, Croatt MP. Org. Lett. 2018; 20: 6046
    • 14d Fang W.-Y, Qin H.-L. J. Org. Chem. 2019; 84: 5803
    • 14e Meng H, Gao S, Luo M, Zeng X. Eur. J. Org. Chem. 2019; 2019: 4617
    • 15a Barton DH. R, Jaszberenyi JC, Theodorakis EA. Tetrahedron 1992; 48: 2613
    • 15b Wang D, Zhu N, Chen P, Lin Z, Liu G. J. Am. Chem. Soc. 2017; 139: 15632
    • 15c Zhong B, Huang H, Jing X, Duan C. Chem. Commun. 2022; 58: 3961
    • 16a Ouchaou K, Georgin D, Taran F. Synlett 2010; 2083
    • 16b Loreau O, Georgin D, Taran F, Audisio D. J. Labelled Compd. Radiopharm. 2015; 58: 425
    • 16c Fu Z, Li Z, Song Y, Yang R, Liu Y, Cai H. J. Org. Chem. 2016; 81: 2794
    • 16d Song F, Salter R, Chen L. J. Org. Chem. 2017; 82: 3530
    • 16e Fu Z, Cao X, Wang S, Guo S, Cai H. Org. Biomol. Chem. 2020; 18: 8381
    • 16f Le Vaillant F, Wodrich MD, Waser J. Chem. Sci. 2017; 8: 1790
    • 16g Ramirez NP, König B, Gonzalez-Gomez JC. Org. Lett. 2019; 21: 1368
    • 17a Mekki-Berrada A, Bennici S, Gillet J.-P, Couturier J-L, Dubois J.-L, Auroux A. ChemSusChem 2013; 6: 1478
    • 17b Mekki-Berrada A, Bennici S, Gillet J.-P, Couturier J.-L, Dubois J.-L, Auroux A. J. Catal. 2013; 306: 30
    • 17c Shirazi Y, Tafazolian H, Viamajala S, Varanasi S, Song Z, Heben MJ. ACS Omega 2017; 2: 9013
    • 18a Toland WG, Ferstandig LL. J. Org. Chem. 1958; 23: 1350
    • 18b Klein DA. J. Org. Chem. 1971; 36: 3050
    • 18c Cantillo D, Kappe CO. J. Org. Chem. 2013; 78: 10567
    • 18d Cartigny D, Dos Santos A, El Kaïm L, Grimaud L, Jacquot R, Marion P. Synthesis 2014; 46: 1802
    • 18e Vanoye L, Hammoud A, Gérard H, Barnes A, Philippe R, Fongarland P, de Bellefon C, Favre-Réguillon A. ACS Catal. 2019; 9: 9705
    • 19a Shen Z, Liu W, Tian X, Zhao Z, Ren Y.-L. Synlett 2020; 31: 1805
    • 19b Xing A.-P, Shen Z, Zhao Z, Tian X, Ren Y.-L. Catal. Commun. 2021; 149: 106175
    • 19c Zhang G, Zhang C, Tian Y, Chen F. Org. Lett. 2023; 25: 917
  • 20 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Cespedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
    • 21a Wang Z, Zhu L, Yin F, Su Z, Li Z, Li C. J. Am. Chem. Soc. 2012; 134: 4258
    • 21b Tan X, Song T, Wang Z, Chen H, Cui L, Li C. Org. Lett. 2017; 19: 1634
  • 22 Mumm O. Ber. Dtsch. Chem. Ges. 1910; 43: 886; DOI: DOI: 10.1002/cber.191004301151.
  • 23 4-Methoxybenzonitrile (3a): Typical ProcedureIn an argon-filled glovebox, an oven-dried 4 mL vial equipped with a magnetic stirrer bar was charged with AgSbF6 (3.4 mg, 5.0 mol%), 4-methoxybenzoic acid (1a, 0.2 mmol, 1.0 equiv), and NCTS (2, 65 mg, 0.24 mmol, 1.2 equiv). Toluene (600 μL) and dodecane (10 μL; internal standard) were added, and the vial was sealed and transferred out of the glove box. The mixture was stirred at 120 ℃ for 48 h, then cooled to r.t. The crude product was purified by column chromatography [silica gel, PE–EtOAc (10:1)] to give a white solid; yield: 79%.1H NMR (400 MHz, CDCl3): δ = 7.60–7.56 (m, 2 H), 6.97–6.92 (m, 2 H), 3.85 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 162.9, 134.1, 119.3, 114.8, 104.1, 55.6. HRMS-ESI: m/z [M + H]+ calcd for C8H8NO: 134.0600; found: 134.0596