CC BY 4.0 · Thromb Haemost 2023; 123(08): 808-839
DOI: 10.1055/a-2052-9175
Meeting Report

Blood Coagulation and Beyond: Position Paper from the Fourth Maastricht Consensus Conference on Thrombosis

Asim Cengiz Akbulut
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Ryanne A. Arisz
2   Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Constance C. F. M. J. Baaten
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
3   Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
,
Gaukhar Baidildinova
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Aarazo Barakzie
2   Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
5   Cardioangiologisches Centrum Bethanien – CCB, Gefäß-Centrum, Frankfurt am Main, Germany
,
Jur ten Berg
6   Department of Cardio-Thoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
,
Wout W. A. van den Broek
7   Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
,
H. C. de Boer
8   Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
,
Amandine Bonifay
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
10   Department of Hematology and Vascular Biology, CHU La TIMONE, APHM, Marseille, France
,
Vanessa Bröker
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Richard J. Buka
11   Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
,
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
12   Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, The Netherlands
,
Arina J. ten Cate-Hoek
12   Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, The Netherlands
,
S. Cointe
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
10   Department of Hematology and Vascular Biology, CHU La TIMONE, APHM, Marseille, France
,
Ciro De Luca
13   Laboratory of Morphology of Neuronal Networks and Systems Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli,” Napoli, Italy
,
Ilaria De Simone
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Rocio Vacik Diaz
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Françoise Dignat-George
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
10   Department of Hematology and Vascular Biology, CHU La TIMONE, APHM, Marseille, France
,
Kathleen Freson
14   Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
,
Giulia Gazzaniga
6   Department of Cardio-Thoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
15   Department of Clinical-Surgical, Diagnostic and Pediatric Science, University of Pavia, Pavia, Italy
,
Eric C. M. van Gorp
16   Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
,
Anxhela Habibi
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Yvonne M. C. Henskens
17   Central Diagnostic Laboratory, Unit for Hemostasis and Transfusion, Maastricht University Medical Centre + , Maastricht, The Netherlands
,
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
12   Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, The Netherlands
,
Abdullah Khan
11   Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
18   MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine and National Institute of Health Research (NIHR) Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
,
Gijsje H. Koenderink
19   Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
,
Akhil Konkoth
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Romaric Lacroix
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
10   Department of Hematology and Vascular Biology, CHU La TIMONE, APHM, Marseille, France
,
Trisha Lahiri
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Wilbur Lam
20   Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
,
Rachel E. Lamerton
11   Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
,
Roberto Lorusso
6   Department of Cardio-Thoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
,
Qi Luo
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Coen Maas
21   CDL Research, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
,
Owen J. T. McCarty
22   Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States
,
Paola E. J. van der Meijden
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
12   Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, The Netherlands
,
Joost C. M. Meijers
23   Department of Molecular Hematology, Sanquin Research, Amsterdam, The Netherlands
24   Department of Experimental Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
25   Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, The Netherlands
,
Adarsh K. Mohapatra
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
3   Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Neta Nevo
26   Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
27   Department of Immunology, Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel
,
Alejandro Pallares Robles
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Philippe Poncelet
28   R and T Department, BioCytex, Marseille, France
,
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Wolfram Ruf
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Ronald Saraswat
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Claudia Schönichen
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
29   Center for Benign Haematology, Thrombosis and Haemostasis, Van Creveldkliniek, UMC Utrecht, University Utrecht, Utrecht, The Netherlands
,
Paolo Simioni
30   General Internal Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padua University Hospital and University of Padua Medical School, Padua, Italy
,
Stefano Spada
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Henri M. H. Spronk
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
12   Thrombosis Expertise Center, Maastricht University Medical Center, Maastricht, The Netherlands
,
Karlygash Tazhibayeva
31   Cancer Center of Shymkent, Al-Farabi Kazakh National University, Almaty, Kazakhstan
,
Jecko Thachil
32   Department of Haematology, Manchester University Hospitals, Manchester, United Kingdom
,
Rocio Vacik Diaz
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
L. Vallier
9   Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
,
Alicia Veninga
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
33   Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
,
2   Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
,
Steve P. Watson
11   Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, United Kingdom
,
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Ruth A. L. Willems
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
,
Anne Willers
6   Department of Cardio-Thoracic Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
,
Pengyu Zhang
1   Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
34   Leibniz Institute for Analytical Sciences - ISAS-e.V., Dortmund, Germany
,
Konstantinos Zifkos
4   Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Mainz, Germany
,
Anton Jan van Zonneveld
8   Department of Internal Medicine (Nephrology) and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
› Author Affiliations


Abstract

The Fourth Maastricht Consensus Conference on Thrombosis included the following themes. Theme 1: The “coagulome” as a critical driver of cardiovascular disease. Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow, and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis. Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infection-associated coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies. This theme included state-of-the-art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: the value and limitations of ex vivo models. Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularized organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation-associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management. Plenary presentations addressed controversial areas, i.e., thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies, and clinically tested factor XI(a) inhibitors, both possibly with reduced bleeding risk. Finally, COVID-19-associated coagulopathy is revisited.



Publication History

Received: 02 December 2022

Accepted: 02 March 2023

Accepted Manuscript online:
13 March 2023

Article published online:
12 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ramcharan KS, Lip GYH, Stonelake PS, Blann AD. The endotheliome: a new concept in vascular biology. Thromb Res 2011; 128 (01) 1-7
  • 2 Owolabi MO, Thrift AG, Mahal A. et al; Stroke Experts Collaboration Group. Primary stroke prevention worldwide: translating evidence into action. Lancet Public Health 2022; 7 (01) e74-e85
  • 3 Kamarova M, Baig S, Patel H. et al. Antiplatelet use in ischemic stroke. Ann Pharmacother 2022; 56 (10) 1159-1173
  • 4 Serebruany VL, Kim MH, Hanley DF. Vorapaxar monotherapy for secondary stroke prevention: a call for randomized trial. Int J Stroke 2016; 11 (06) 614-617
  • 5 De Luca C, Colangelo AM, Alberghina L, Papa M. Neuro-immune hemostasis: homeostasis and diseases in the central nervous system. Front Cell Neurosci 2018; 12: 459
  • 6 Sokolova E, Reiser G. Prothrombin/thrombin and the thrombin receptors PAR-1 and PAR-4 in the brain: localization, expression and participation in neurodegenerative diseases. Thromb Haemost 2008; 100 (04) 576-581
  • 7 Von dem Borne PA, Bajzar L, Meijers JC, Nesheim ME, Bouma BN. Thrombin-mediated activation of factor XI results in a thrombin-activatable fibrinolysis inhibitor-dependent inhibition of fibrinolysis. J Clin Invest 1997; 99 (10) 2323-2327
  • 8 Suri MFK, Yamagishi K, Aleksic N, Hannan PJ, Folsom AR. Novel hemostatic factor levels and risk of ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) Study. Cerebrovasc Dis 2010; 29 (05) 497-502
  • 9 Salomon O, Steinberg DM, Koren-Morag N, Tanne D, Seligsohn U. Reduced incidence of ischemic stroke in patients with severe factor XI deficiency. Blood 2008; 111 (08) 4113-4117
  • 10 Undas A, Slowik A, Gissel M, Mann KG, Butenas S. Circulating activated factor XI and active tissue factor as predictors of worse prognosis in patients following ischemic cerebrovascular events. Thromb Res 2011; 128 (05) e62-e66
  • 11 Bouma BN, Mosnier LO, Meijers JC, Griffin JH. Factor XI dependent and independent activation of thrombin activatable fibrinolysis inhibitor (TAFI) in plasma associated with clot formation. Thromb Haemost 1999; 82 (06) 1703-1708
  • 12 Leung PY, Hurst S, Berny-Lang MA. et al. Inhibition of factor XII-mediated activation of factor XI provides protection against experimental acute ischemic stroke in mice. Transl Stroke Res 2012; 3 (03) 381-389
  • 13 Maroney SA, Westrick RJ, Cleuren AC. et al. Tissue factor pathway inhibitor is required for cerebrovascular development in mice. Blood 2021; 137 (02) 258-268
  • 14 Ginhoux F, Greter M, Leboeuf M. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010; 330 (6005): 841-845
  • 15 Hollister RD, Kisiel W, Hyman BT. Immunohistochemical localization of tissue factor pathway inhibitor-1 (TFPI-1), a Kunitz proteinase inhibitor, in Alzheimer's disease. Brain Res 1996; 728 (01) 13-19
  • 16 Ziliotto N, Bernardi F, Jakimovski D. et al. Hemostasis biomarkers in multiple sclerosis. Eur J Neurol 2018; 25 (09) 1169-1176
  • 17 Ziliotto N, Lamberti N, Manfredini F. et al. Functional recovery in multiple sclerosis patients undergoing rehabilitation programs is associated with plasma levels of hemostasis inhibitors. Mult Scler Relat Disord 2020; 44: 102319
  • 18 Yang L, Li Y, Bhattacharya A, Zhang Y. A plasma proteolysis pathway comprising blood coagulation proteases. Oncotarget 2016; 7 (27) 40919-40938
  • 19 Yang L, Bhattacharya A, Li Y, Zhang Y. Anticoagulants inhibit proteolytic clearance of plasma amyloid beta. Oncotarget 2017; 9 (05) 5614-5626
  • 20 Zamolodchikov D, Renné T, Strickland S. The Alzheimer's disease peptide β-amyloid promotes thrombin generation through activation of coagulation factor XII. J Thromb Haemost 2016; 14 (05) 995-1007
  • 21 Begic E, Hadzidedic S, Obradovic S, Begic Z, Causevic M. Increased levels of coagulation factor XI in plasma are related to Alzheimer's disease diagnosis. J Alzheimers Dis 2020; 77 (01) 375-386
  • 22 Sattlecker M, Kiddle SJ, Newhouse S. et al; AddNeuroMed Consortium. Alzheimer's disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement 2014; 10 (06) 724-734
  • 23 Chen M, Xia W. Proteomic profiling of plasma and brain tissue from Alzheimer's disease patients reveals candidate network of plasma biomarkers. J Alzheimers Dis 2020; 76 (01) 349-368
  • 24 Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018; 19 (05) 283-301
  • 25 Montagne A, Nation DA, Sagare AP. et al. APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. Nature 2020; 581 (7806): 71-76
  • 26 Ryu JK, Rafalski VA, Meyer-Franke A. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat Immunol 2018; 19 (11) 1212-1223
  • 27 Ahn HJ, Glickman JF, Poon KL. et al. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer's disease mice. J Exp Med 2014; 211 (06) 1049-1062
  • 28 Chen Z-L, Revenko AS, Singh P, MacLeod AR, Norris EH, Strickland S. Depletion of coagulation factor XII ameliorates brain pathology and cognitive impairment in Alzheimer disease mice. Blood 2017; 129 (18) 2547-2556
  • 29 Shnerb Ganor R, Harats D, Schiby G. et al. Elderly apolipoprotein E–/– mice with advanced atherosclerotic lesions in the aorta do not develop Alzheimer's disease-like pathologies. Mol Med Rep 2018; 17 (02) 2488-2492
  • 30 Shnerb Ganor R, Harats D, Schiby G. et al. Factor XI deficiency protects against atherogenesis in apolipoprotein E/factor XI double knockout mice. Arterioscler Thromb Vasc Biol 2016; 36 (03) 475-481
  • 31 Ngo ATP, Jordan KR, Mueller PA. et al. Pharmacological targeting of coagulation factor XI mitigates the development of experimental atherosclerosis in low-density lipoprotein receptor-deficient mice. J Thromb Haemost 2021; 19 (04) 1001-1017
  • 32 Kaikita K, Takeya M, Ogawa H, Suefuji H, Yasue H, Takahashi K. Co-localization of tissue factor and tissue factor pathway inhibitor in coronary atherosclerosis. J Pathol 1999; 188 (02) 180-188
  • 33 Morange PE, Simon C, Alessi MC. et al; PRIME Study Group. Endothelial cell markers and the risk of coronary heart disease: the Prospective Epidemiological Study of Myocardial Infarction (PRIME) study. Circulation 2004; 109 (11) 1343-1348
  • 34 Figueras J, Monasterio J, Lidón RM, Sambola A, Garcia-Dorado D. Lower tissue factor inhibition in patients with ST segment elevation than in patients with non ST elevation acute myocardial infarction. Thromb Res 2012; 130 (03) 458-462
  • 35 Morange PE, Blankenberg S, Alessi MC. et al; Atherogene Investigators. Prognostic value of plasma tissue factor and tissue factor pathway inhibitor for cardiovascular death in patients with coronary artery disease: the AtheroGene study. J Thromb Haemost 2007; 5 (03) 475-482
  • 36 Zhao Y, Yu Y, Shi M. et al. Association study to evaluate TFPI gene in CAD in Han Chinese. BMC Cardiovasc Disord 2017; 17 (01) 188
  • 37 Naji DH, Tan C, Han F. et al. Significant genetic association of a functional TFPI variant with circulating fibrinogen levels and coronary artery disease. Mol Genet Genomics 2018; 293 (01) 119-128
  • 38 Opstad TB, Pettersen AA, Weiss T, Arnesen H, Seljeflot I. Gender differences of polymorphisms in the TF and TFPI genes, as related to phenotypes in patients with coronary heart disease and type-2 diabetes. Thromb J 2010; 8: 7
  • 39 Moatti D, Haidar B, Fumeron F. et al. A new T-287C polymorphism in the 5′ regulatory region of the tissue factor pathway inhibitor gene. Association study of the T-287C and C-399T polymorphisms with coronary artery disease and plasma TFPI levels. Thromb Haemost 2000; 84 (02) 244-249
  • 40 Moatti D, Seknadji P, Galand C. et al. Polymorphisms of the tissue factor pathway inhibitor (TFPI) gene in patients with acute coronary syndromes and in healthy subjects : impact of the V264M substitution on plasma levels of TFPI. Arterioscler Thromb Vasc Biol 1999; 19 (04) 862-869
  • 41 Lorentz CU, Verbout NG, Cao Z. et al. Factor XI contributes to myocardial ischemia-reperfusion injury in mice. Blood Adv 2018; 2 (02) 85-88
  • 42 Kossmann S, Lagrange J, Jäckel S. et al. Platelet-localized FXI promotes a vascular coagulation-inflammatory circuit in arterial hypertension. Sci Transl Med 2017; 9 (375): eaah4923
  • 43 Preis M, Hirsch J, Kotler A. et al. Factor XI deficiency is associated with lower risk for cardiovascular and venous thromboembolism events. Blood 2017; 129 (09) 1210-1215
  • 44 Doggen CJM, Rosendaal FR, Meijers JCM. Levels of intrinsic coagulation factors and the risk of myocardial infarction among men: opposite and synergistic effects of factors XI and XII. Blood 2006; 108 (13) 4045-4051
  • 45 Butenas S, Undas A, Gissel MT, Szuldrzynski K, Zmudka K, Mann KG. Factor XIa and tissue factor activity in patients with coronary artery disease. Thromb Haemost 2008; 99 (01) 142-149
  • 46 Salomon O, Steinberg DM, Dardik R. et al. Inherited factor XI deficiency confers no protection against acute myocardial infarction. J Thromb Haemost 2003; 1 (04) 658-661
  • 47 Siegerink B, Govers-Riemslag JWP, Rosendaal FR, Ten Cate H, Algra A. Intrinsic coagulation activation and the risk of arterial thrombosis in young women: results from the Risk of Arterial Thrombosis in relation to Oral contraceptives (RATIO) case-control study. Circulation 2010; 122 (18) 1854-1861
  • 48 Ząbczyk MT, Hanarz M, Malinowski KP. et al. Active FXI can independently predict ischemic stroke in anticoagulated atrial fibrillation patients: a cohort study. Thromb Haemost 2022; 122 (08) 1397-1406
  • 49 Piccini JP, Caso V, Connolly SJ. et al; PACIFIC-AF Investigators. Safety of the oral factor XIa inhibitor asundexian compared with apixaban in patients with atrial fibrillation (PACIFIC-AF): a multicentre, randomised, double-blind, double-dummy, dose-finding phase 2 study. Lancet 2022; 399 (10333): 1383-1390
  • 50 Garlapati V, Molitor M, Michna T. et al. Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1-driven fibrotic remodeling in ischemic heart failure. J Clin Invest 2023; 133 (04) e156436
  • 51 Aronovich A, Nur Y, Shezen E. et al. A novel role for factor VIII and thrombin/PAR1 in regulating hematopoiesis and its interplay with the bone structure. Blood 2013; 122 (15) 2562-2571
  • 52 Borkowska S, Suszynska M, Mierzejewska K. et al. Novel evidence that crosstalk between the complement, coagulation and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia 2014; 28 (11) 2148-2154
  • 53 Gur-Cohen S, Kollet O, Graf C. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370 (01) 65-81
  • 54 Nguyen TS, Lapidot T, Ruf W. Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018; 132 (02) 123-131
  • 55 Gur-Cohen S, Itkin T, Chakrabarty S. et al. PAR1 signaling regulates the retention and recruitment of EPCR-expressing bone marrow hematopoietic stem cells. Nat Med 2015; 21 (11) 1307-1317
  • 56 Nevo N, Zuckerman T, Gur-Cohen S. et al. PAR1 expression predicts clinical G-CSF CD34+ HSPC mobilization and repopulation potential in transplanted patients. HemaSphere 2019; 3 (04) e288
  • 57 Nevo N, Ordonez-Moreno L-A, Gur-Cohen S. et al. Enhanced thrombin/PAR1 activity promotes G-CSF- and AMD3100-induced mobilization of hematopoietic stem and progenitor cells via NO upregulation. Leukemia 2021; 35 (11) 3334-3338
  • 58 Fares I, Chagraoui J, Lehnertz B. et al. EPCR expression marks UM171-expanded CD34+ cord blood stem cells. Blood 2017; 129 (25) 3344-3351
  • 59 Groeneweg KE, Duijs JMGJ, Florijn BW. et al. Circulating long noncoding RNA LNC-EPHA6 associates with acute rejection after kidney transplantation. Int J Mol Sci 2020; 21 (16) 5616
  • 60 Humphreys BD. Targeting pericyte differentiation as a strategy to modulate kidney fibrosis in diabetic nephropathy. Semin Nephrol 2012; 32 (05) 463-470
  • 61 Lerman LO, Chade AR. Angiogenesis in the kidney: a new therapeutic target?. Curr Opin Nephrol Hypertens 2009; 18 (02) 160-165
  • 62 Bijkerk R, Duijs JMGJ, Khairoun M. et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am J Transplant 2015; 15 (04) 1081-1090
  • 63 Dólleman SC, Agten SM, Spronk HMH. et al. Thrombin in complex with dabigatran can still interact with PAR-1 via exosite-I and instigate loss of vascular integrity. J Thromb Haemost 2022; 20 (04) 996-1007
  • 64 Maroney SA, Haberichter SL, Friese P. et al. Active tissue factor pathway inhibitor is expressed on the surface of coated platelets. Blood 2007; 109 (05) 1931-1937
  • 65 Uil M, Hau CM, Ahdi M. et al. Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy. Clin Kidney J 2019; 14 (01) 358-365
  • 66 Uil M, Butter LM, Claessen N, Larsen PW, Florquin S, Roelofs JJTH. Platelet inhibition by ticagrelor is protective against diabetic nephropathy in mice. FASEB J 2020; 34 (10) 13750-13761
  • 67 Cameron-Vendrig A, Reheman A, Siraj MA. et al. Glucagon-like peptide 1 receptor activation attenuates platelet aggregation and thrombosis. Diabetes 2016; 65 (06) 1714-1723
  • 68 Geovanini GR, Libby P. Atherosclerosis and inflammation: overview and updates. Clin Sci (Lond) 2018; 132 (12) 1243-1252
  • 69 Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med 2015; 278 (05) 483-493
  • 70 Quillard T, Franck G, Mawson T, Folco E, Libby P. Mechanisms of erosion of atherosclerotic plaques. Curr Opin Lipidol 2017; 28 (05) 434-441
  • 71 Randolph GJ. Mechanisms that regulate macrophage burden in atherosclerosis. Circ Res 2014; 114 (11) 1757-1771
  • 72 Viola J, Soehnlein O. Atherosclerosis - a matter of unresolved inflammation. Semin Immunol 2015; 27 (03) 184-193
  • 73 Bane Jr CE, Ivanov I, Matafonov A. et al. Factor XI deficiency alters the cytokine response and activation of contact proteases during polymicrobial sepsis in mice. PLoS One 2016; 11 (04) e0152968
  • 74 Silasi R, Keshari RS, Regmi G. et al. Factor XII plays a pathogenic role in organ failure and death in baboons challenged with Staphylococcus aureus. Blood 2021; 138 (02) 178-189
  • 75 Silasi R, Keshari RS, Lupu C. et al. Inhibition of contact-mediated activation of factor XI protects baboons against S aureus-induced organ damage and death. Blood Adv 2019; 3 (04) 658-669
  • 76 Lorentz CU, Tucker EI, Verbout NG. et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: results of a randomized phase 2 clinical trial. Blood 2021; 138 (22) 2173-2184
  • 77 Evans BR, Yerly A, van der Vorst EPC. et al. Inflammatory mediators in atherosclerotic vascular remodeling. Front Cardiovasc Med 2022; 9: 868934
  • 78 Jiang H, Zhou Y, Nabavi SM. et al. Mechanisms of oxidized LDL-mediated endothelial dysfunction and its consequences for the development of atherosclerosis. Front Cardiovasc Med 2022; 9: 925923
  • 79 Puy C, Ngo ATP, Pang J. et al. Endothelial PAI-1 (plasminogen activator inhibitor-1) blocks the intrinsic pathway of coagulation, inducing the clearance and degradation of FXIa (activated factor XI). Arterioscler Thromb Vasc Biol 2019; 39 (07) 1390-1401
  • 80 Endler G, Marsik C, Jilma B, Schickbauer T, Quehenberger P, Mannhalter C. Evidence of a U-shaped association between factor XII activity and overall survival. J Thromb Haemost 2007; 5 (06) 1143-1148
  • 81 Cooley BC. The dirty side of the intrinsic pathway of coagulation. Thromb Res 2016; 145: 159-160
  • 82 Juang LJ, Mazinani N, Novakowski SK. et al. Coagulation factor XII contributes to hemostasis when activated by soil in wounds. Blood Adv 2020; 4 (08) 1737-1745
  • 83 Mailer RK, Rangaswamy C, Konrath S, Emsley J, Renné T. An update on factor XII-driven vascular inflammation. Biochim Biophys Acta Mol Cell Res 2022; 1869 (01) 119166
  • 84 de Maat S, Joseph K, Maas C, Kaplan AP. Blood clotting and the pathogenesis of types I and II hereditary angioedema. Clin Rev Allergy Immunol 2021; 60 (03) 348-356
  • 85 Scheffel J, Mahnke NA, Hofman ZLM. et al. Cold-induced urticarial autoinflammatory syndrome related to factor XII activation. Nat Commun 2020; 11 (01) 179
  • 86 Govers-Riemslag JWP, Konings J, Cosemans JMEM. et al. Impact of deficiency of intrinsic coagulation factors XI and XII on ex vivo thrombus formation and clot lysis. TH Open 2019; 3 (03) e273-e285
  • 87 Dickeson SK, Kumar S, Sun M-F. et al. A mechanism for hereditary angioedema caused by a lysine 311-to-glutamic acid substitution in plasminogen. Blood 2022; 139 (18) 2816-2829
  • 88 Stavrou EX, Fang C, Bane KL. et al. Factor XII and uPAR upregulate neutrophil functions to influence wound healing. J Clin Invest 2018; 128 (03) 944-959
  • 89 Burla F, Mulla Y, Vos BE. et al. From mechanical resilience to active material properties in biopolymer networks. Nat Rev Phys 2019; 1: 249-263
  • 90 Litvinov RI, Weisel JW. Fibrin mechanical properties and their structural origins. Matrix Biol 2017; 60-61: 110-123
  • 91 Vos BE, Martinez-Torres C, Burla F, Weisel JW, Koenderink GH. Revealing the molecular origins of fibrin's elastomeric properties by in situ X-ray scattering. Acta Biomater 2020; 104: 39-52
  • 92 Wang Y, Kumar S, Nisar A, Bonn M, Rausch MK, Parekh SH. Probing fibrin's molecular response to shear and tensile deformation with coherent Raman microscopy. Acta Biomater 2021; 121: 383-392
  • 93 Undas A, Ariëns RAS. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011; 31 (12) e88-e99
  • 94 Leong L, Chernysh IN, Xu Y. et al. Clot stability as a determinant of effective factor VIII replacement in hemophilia A. Res Pract Thromb Haemost 2017; 1 (02) 231-241
  • 95 Wolberg AS, Allen GA, Monroe DM, Hedner U, Roberts HR, Hoffman M. High dose factor VIIa improves clot structure and stability in a model of haemophilia B. Br J Haematol 2005; 131 (05) 645-655
  • 96 Plodinec M, Loparic M, Monnier CA. et al. The nanomechanical signature of breast cancer. Nat Nanotechnol 2012; 7 (11) 757-765
  • 97 Alkarithi G, Duval C, Shi Y, Macrae FL, Ariëns RAS. Thrombus structural composition in cardiovascular disease. Arterioscler Thromb Vasc Biol 2021; 41 (09) 2370-2383
  • 98 Staessens S, François O, Brinjikji W. et al. Studying stroke thrombus composition after thrombectomy: what can we learn?. Stroke 2021; 52 (11) 3718-3727
  • 99 Karbach SH, Schönfelder T, Brandão I. et al. Gut microbiota promote angiotensin II-induced arterial hypertension and vascular dysfunction. J Am Heart Assoc 2016; 5 (09) e003698
  • 100 Han Y-H, Onufer EJ, Huang L-H. et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 2021; 373 (6553): eabe6729
  • 101 Johnson EL, Heaver SL, Waters JL. et al. Sphingolipids produced by gut bacteria enter host metabolic pathways impacting ceramide levels. Nat Commun 2020; 11 (01) 2471
  • 102 Formes H, Bernardes JP, Mann A. et al. The gut microbiota instructs the hepatic endothelial cell transcriptome. iScience 2021; 24 (10) 103092
  • 103 Jäckel S, Kiouptsi K, Lillich M. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 2017; 130 (04) 542-553
  • 104 Ascher S, Wilms E, Pontarollo G. et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 2020; 40 (09) 2279-2292
  • 105 Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol 2018; 48 (04) 564-575
  • 106 Zhu W, Gregory JC, Org E. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165 (01) 111-124
  • 107 Kappel BA, De Angelis L, Heiser M. et al. Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Mol Metab 2020; 36: 100976
  • 108 Stepankova R, Tonar Z, Bartova J. et al. Absence of microbiota (germ-free conditions) accelerates the atherosclerosis in ApoE-deficient mice fed standard low cholesterol diet. J Atheroscler Thromb 2010; 17 (08) 796-804
  • 109 Lindskog Jonsson A, Caesar R, Akrami R. et al. Impact of gut microbiota and diet on the development of atherosclerosis in Apoe-/- mice. Arterioscler Thromb Vasc Biol 2018; 38 (10) 2318-2326
  • 110 Kiouptsi K, Jäckel S, Pontarollo G. et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. MBio 2019; 10 (05) e02298-19
  • 111 Kasahara K, Krautkramer KA, Org E. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 2018; 3 (12) 1461-1471
  • 112 Wang Z, Klipfell E, Bennett BJ. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
  • 113 Wang Z, Roberts AB, Buffa JA. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163 (07) 1585-1595
  • 114 Haghikia A, Li XS, Liman TG. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 2018; 38 (09) 2225-2235
  • 115 Witkowski M, Witkowski M, Friebel J. et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res 2022; 118 (10) 2367-2384
  • 116 Schoch L, Sutelman P, Suades R, Badimon L, Moreno-Indias I, Vilahur G. The gut microbiome dysbiosis is recovered by restoring a normal diet in hypercholesterolemic pigs. Eur J Clin Invest 2023; 53 (04) e13927
  • 117 Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2019; 73 (16) 2089-2105
  • 118 Kiouptsi K, Jäckel S, Wilms E. et al. The commensal microbiota enhances ADP-triggered integrin αIIbβ3 activation and von Willebrand factor-mediated platelet deposition to type I collagen. Int J Mol Sci 2020; 21 (19) 7171
  • 119 Zhang X, Zhang X, Tong F. et al. Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment. eLife 2022; 11: e70240
  • 120 Vieira-Silva S, Falony G, Belda E. et al; MetaCardis Consortium. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020; 581 (7808): 310-315
  • 121 Harper A, Vijayakumar V, Ouwehand AC. et al. Viral infections, the microbiome, and probiotics. Front Cell Infect Microbiol 2021; 10: 596166
  • 122 Hussain I, Cher GLY, Abid MA, Abid MB. Role of gut microbiome in COVID-19: an insight into pathogenesis and therapeutic potential. Front Immunol 2021; 12: 765965
  • 123 Sun Z, Song Z-G, Liu C. et al. Gut microbiome alterations and gut barrier dysfunction are associated with host immune homeostasis in COVID-19 patients. BMC Med 2022; 20 (01) 24
  • 124 Du X, Ley R, Buck AH. MicroRNAs and extracellular vesicles in the gut: new host modulators of the microbiome?. Micro Life 2021; 2: 10
  • 125 Konkoth A, Saraswat R, Dubrou C. et al. Multifaceted role of extracellular vesicles in atherosclerosis. Atherosclerosis 2021; 319: 121-131
  • 126 Zuo T, Wu X, Wen W, Lan P. Gut microbiome alterations in COVID-19. Genomics Proteomics Bioinformatics 2021; 19 (05) 679-688
  • 127 Goeijenbier M, van Wissen M, van de Weg C. et al. Review: viral infections and mechanisms of thrombosis and bleeding. J Med Virol 2012; 84 (10) 1680-1696
  • 128 Raadsen M, Du Toit J, Langerak T, van Bussel B, van Gorp E, Goeijenbier M. Thrombocytopenia in virus infections. J Clin Med 2021; 10 (04) 877
  • 129 Mairuhu ATA, Mac Gillavry MR, Setiati TE. et al. Is clinical outcome of dengue-virus infections influenced by coagulation and fibrinolysis? A critical review of the evidence. Lancet Infect Dis 2003; 3 (01) 33-41
  • 130 Goeijenbier M, van Gorp ECM, Van den Brand JMA. et al. Activation of coagulation and tissue fibrin deposition in experimental influenza in ferrets. BMC Microbiol 2014; 14: 134
  • 131 Keller TT, Mairuhu ATA, de Kruif MD. et al. Infections and endothelial cells. Cardiovasc Res 2003; 60 (01) 40-48
  • 132 Opal SM. Interactions between coagulation and inflammation. Scand J Infect Dis 2003; 35 (09) 545-554
  • 133 Esmon CT. The impact of the inflammatory response on coagulation. Thromb Res 2004; 114 (5–6): 321-327
  • 134 Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation 2004; 109 (22) 2698-2704
  • 135 Levi M, van der Poll T, Schultz M. New insights into pathways that determine the link between infection and thrombosis. Neth J Med 2012; 70 (03) 114-120
  • 136 van der Poll T, de Boer JD, Levi M. The effect of inflammation on coagulation and vice versa. Curr Opin Infect Dis 2011; 24 (03) 273-278
  • 137 van Gorp EC, Suharti C, ten Cate H. et al. Review: infectious diseases and coagulation disorders. J Infect Dis 1999; 180 (01) 176-186
  • 138 Van Gorp ECM, Setiati TE, Mairuhu ATA. et al. Impaired fibrinolysis in the pathogenesis of dengue hemorrhagic fever. J Med Virol 2002; 67 (04) 549-554
  • 139 Müller-Calleja N, Hollerbach A, Royce J. et al. Lipid presentation by the protein C receptor links coagulation with autoimmunity. Science 2021; 371 (6534): eabc0956
  • 140 Hollerbach A, Müller-Calleja N, Pedrosa D. et al. Pathogenic lipid-binding antiphospholipid antibodies are associated with severity of COVID-19. J Thromb Haemost 2021; 19 (09) 2335-2347
  • 141 Levi M. Disseminated intravascular coagulation. Crit Care Med 2007; 35 (09) 2191-2195
  • 142 Miller HC, Stephan M. Hemorrhagic varicella: a case report and review of the complications of varicella in children. Am J Emerg Med 1993; 11 (06) 633-638
  • 143 Uthman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 2002; 31 (04) 256-263
  • 144 Geisbert TW, Jahrling PB. Exotic emerging viral diseases: progress and challenges. Nat Med 2004; 10 (12) S110-S121
  • 145 Jing H, Wu X, Xiang M, Liu L, Novakovic VA, Shi J. Pathophysiological mechanisms of thrombosis in acute and long COVID-19. Front Immunol 2022; 13: 992384
  • 146 Tanguay J-F, Geoffroy P, Sirois MG. et al. Prevention of in-stent restenosis via reduction of thrombo-inflammatory reactions with recombinant P-selectin glycoprotein ligand-1. Thromb Haemost 2004; 91 (06) 1186-1193
  • 147 Tomashefski Jr JF, Davies P, Boggis C, Greene R, Zapol WM, Reid LM. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am J Pathol 1983; 112 (01) 112-126
  • 148 Jackson SP, Darbousset R, Schoenwaelder SM. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 2019; 133 (09) 906-918
  • 149 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (01) 34-45
  • 150 Ortega-Paz L, Talasaz AH, Sadeghipour P. et al. COVID-19-associated pulmonary embolism: review of the pathophysiology, epidemiology, prevention, diagnosis, and treatment. Semin Thromb Hemost 2022; (e-pub ahead of print). DOI: 10.1055/s-0042-1757634.
  • 151 Meyers S, Crescente M, Verhamme P, Martinod K. Staphylococcus aureus and neutrophil extracellular traps: the master manipulator meets its match in immunothrombosis. Arterioscler Thromb Vasc Biol 2022; 42 (03) 261-276
  • 152 Iba T, Levy JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2018; 16 (02) 231-241
  • 153 Gyöngyösi M, Alcaide P, Asselbergs FW. et al. Long COVID and the cardiovascular system - elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial & Pericardial Diseases. Cardiovasc Res 2023; 119 (02) 336-356
  • 154 Megy K, Downes K, Simeoni I. et al; Subcommittee on Genomics in Thrombosis and Hemostasis. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: communication from the SSC of the ISTH. J Thromb Haemost 2019; 17 (08) 1253-1260
  • 155 Ver Donck F, Labarque V, Freson K. Hemostatic phenotypes and genetic disorders. Res Pract Thromb Haemost 2021; 5 (08) e12637
  • 156 Downes K, Megy K, Duarte D. et al; NIHR BioResource. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood 2019; 134 (23) 2082-2091
  • 157 Megy K, Downes K, Morel-Kopp M-C. et al. GoldVariants, a resource for sharing rare genetic variants detected in bleeding, thrombotic, and platelet disorders: communication from the ISTH SSC Subcommittee on Genomics in Thrombosis and Hemostasis. J Thromb Haemost 2021; 19 (10) 2612-2617
  • 158 Turro E, Astle WJ, Megy K. et al; NIHR BioResource for the 100,000 Genomes Project. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020; 583 (7814): 96-102
  • 159 Westbury SK, Turro E, Greene D. et al; BRIDGE-BPD Consortium. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med 2015; 7 (01) 36
  • 160 Angiolillo DJ, Capodanno D, Danchin N. et al. Derivation, validation, and prognostic utility of a prediction rule for nonresponse to clopidogrel: the ABCD-GENE score. JACC Cardiovasc Interv 2020; 13 (05) 606-617
  • 161 Pinto N, Dolan ME. Clinically relevant genetic variations in drug metabolizing enzymes. Curr Drug Metab 2011; 12 (05) 487-497
  • 162 Valgimigli M, Bueno H, Byrne RA. et al; ESC Scientific Document Group, ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 2018; 39 (03) 213-260
  • 163 Wiviott SD, Braunwald E, McCabe CH. et al; TRITON-TIMI 38 Investigators. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007; 357 (20) 2001-2015
  • 164 Wallentin L, Becker RC, Budaj A. et al; PLATO Investigators. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009; 361 (11) 1045-1057
  • 165 Vranckx P, Leonardi S, Tebaldi M. et al. Prospective validation of the Bleeding Academic Research Consortium classification in the all-comer PRODIGY trial. Eur Heart J 2014; 35 (37) 2524-2529
  • 166 Vranckx P, White HD, Huang Z. et al. Validation of BARC bleeding criteria in patients with acute coronary syndromes: the TRACER trial. J Am Coll Cardiol 2016; 67 (18) 2135-2144
  • 167 Postula M, Janicki PK, Rosiak M. et al. Effect of common single-nucleotide polymorphisms in acetylsalicylic acid metabolic pathway genes on platelet reactivity in patients with diabetes. Med Sci Monit 2013; 19: 394-408
  • 168 Gurbel PA, Rout A, Tantry US. Pharmacogenetic considerations in antiplatelet therapy. Expert Rev Precis Med Drug Dev 2020; 5: 235-238
  • 169 Teng R, Butler K. Pharmacokinetics, pharmacodynamics, tolerability and safety of single ascending doses of ticagrelor, a reversibly binding oral P2Y(12) receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 2010; 66 (05) 487-496
  • 170 Mega JL, Close SL, Wiviott SD. et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 2009; 119 (19) 2553-2560
  • 171 Ancrenaz V, Daali Y, Fontana P. et al. Impact of genetic polymorphisms and drug-drug interactions on clopidogrel and prasugrel response variability. Curr Drug Metab 2010; 11 (08) 667-677
  • 172 Kazui M, Nishiya Y, Ishizuka T. et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos 2010; 38 (01) 92-99
  • 173 Mega JL, Close SL, Wiviott SD. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360 (04) 354-362
  • 174 Breet NJ, van Werkum JW, Bouman HJ. et al. Comparison of platelet function tests in predicting clinical outcome in patients undergoing coronary stent implantation. JAMA 2010; 303 (08) 754-762
  • 175 Harmsze A, van Werkum JW, Bouman HJ. et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics 2010; 20 (01) 18-25
  • 176 Hulot J-S, Bura A, Villard E. et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006; 108 (07) 2244-2247
  • 177 Harmsze AM, van Werkum JW, Ten Berg JM. et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis: a case-control study. Eur Heart J 2010; 31 (24) 3046-3053
  • 178 Lee CR, Luzum JA, Sangkuhl K. et al. Clinical pharmacogenetics implementation consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin Pharmacol Ther 2022; 112 (05) 959-967
  • 179 Pereira NL, Rihal C, Lennon R. et al. Effect of CYP2C19 genotype on ischemic outcomes during oral P2Y12 inhibitor therapy: a meta-analysis. JACC Cardiovasc Interv 2021; 14 (07) 739-750
  • 180 Pereira NL, Farkouh ME, So D. et al. Effect of genotype-guided oral P2Y12 inhibitor selection vs conventional clopidogrel therapy on ischemic outcomes after percutaneous coronary intervention: the TAILOR-PCI randomized clinical trial. JAMA 2020; 324 (08) 761-771
  • 181 Collet J-P, Thiele H, Barbato E. et al; ESC Scientific Document Group. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021; 42 (14) 1289-1367
  • 182 Beitelshees AL, Thomas CD, Empey PE. et al; Implementing Genomics in Practice (IGNITE) Network Pharmacogenetics Working Group. CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention in diverse clinical settings. J Am Heart Assoc 2022; 11 (04) e024159
  • 183 Pan Y, Chen W, Xu Y. et al. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack: a systematic review and meta-analysis. Circulation 2017; 135 (01) 21-33
  • 184 Wang Y, Meng X, Wang A. et al; CHANCE-2 Investigators. Ticagrelor versus clopidogrel in CYP2C19 loss-of-function carriers with stroke or TIA. N Engl J Med 2021; 385 (27) 2520-2530
  • 185 Borre ED, Goode A, Raitz G. et al. Predicting thromboembolic and bleeding event risk in patients with non-valvular atrial fibrillation: a systematic review. Thromb Haemost 2018; 118 (12) 2171-2187
  • 186 Chao T-F, Lip GYH, Lin Y-J. et al. Incident risk factors and major bleeding in patients with atrial fibrillation treated with oral anticoagulants: a comparison of baseline, follow-up and delta HAS-BLED scores with an approach focused on modifiable bleeding risk factors. Thromb Haemost 2018; 118 (04) 768-777
  • 187 Kim HK, Tantry US, Smith Jr SC. et al. The East Asian Paradox: an updated position statement on the challenges to the current antithrombotic strategy in patients with cardiovascular disease. Thromb Haemost 2021; 121 (04) 422-432
  • 188 Pollack Jr CV, Reilly PA, van Ryn J. et al. Idarucizumab for dabigatran reversal - full cohort analysis. N Engl J Med 2017; 377 (05) 431-441
  • 189 Lu G, DeGuzman FR, Hollenbach SJ. et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med 2013; 19 (04) 446-451
  • 190 Sheffield WP, Lambourne MD, Eltringham-Smith LJ, Bhakta V, Arnold DM, Crowther MA. γT -S195A thrombin reduces the anticoagulant effects of dabigatran in vitro and in vivo. J Thromb Haemost 2014; 12 (07) 1110-1115
  • 191 Jourdi G, Gouin-Thibault I, Siguret V, Gandrille S, Gaussem P, Le Bonniec B. FXa-α2-macroglobulin complex neutralizes direct oral anticoagulants targeting FXa in vitro and in vivo. Thromb Haemost 2018; 118 (09) 1535-1544
  • 192 Thalji NK, Ivanciu L, Davidson R, Gimotty PA, Krishnaswamy S, Camire RM. A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med 2016; 22 (08) 924-932
  • 193 Parsons-Rich D, Hua F, Li G, Kantaridis C, Pittman DD, Arkin S. Phase 1 dose-escalating study to evaluate the safety, pharmacokinetics, and pharmacodynamics of a recombinant factor Xa variant (FXaI16L ). J Thromb Haemost 2017; 15 (05) 931-937
  • 194 Verhoef D, Visscher KM, Vosmeer CR. et al. Engineered factor Xa variants retain procoagulant activity independent of direct factor Xa inhibitors. Nat Commun 2017; 8 (01) 528
  • 195 von Drygalski A, Cramer TJ, Bhat V, Griffin JH, Gale AJ, Mosnier LO. Improved hemostasis in hemophilia mice by means of an engineered factor Va mutant. J Thromb Haemost 2014; 12 (03) 363-372
  • 196 von Drygalski A, Bhat V, Gale AJ. et al. An engineered factor Va prevents bleeding induced by direct-acting oral anticoagulants by different mechanisms. Blood Adv 2020; 4 (15) 3716-3727
  • 197 Ansell J, Laulicht BE, Bakhru SH. et al. Ciraparantag, an anticoagulant reversal drug: mechanism of action, pharmacokinetics, and reversal of anticoagulants. Blood 2021; 137 (01) 115-125
  • 198 Ansell J, Bakhru S, Laulicht BE, Tracey G, Villano S, Freedman D. Ciraparantag reverses the anticoagulant activity of apixaban and rivaroxaban in healthy elderly subjects. Eur Heart J 2022; 43 (10) 985-992
  • 199 Caruso C, Lam WA. Point-of-care diagnostic assays and novel preclinical technologies for hemostasis and thrombosis. Semin Thromb Hemost 2021; 47 (02) 120-128
  • 200 Boender J, Kruip MJHA, Leebeek FWG. A diagnostic approach to mild bleeding disorders. J Thromb Haemost 2016; 14 (08) 1507-1516
  • 201 Moenen FCJI, Vries MJA, Nelemans PJ. et al. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019; 30 (01) 81-87
  • 202 Panova-Noeva M, van der Meijden PEJ, Ten Cate H. Clinical applications, pitfalls, and uncertainties of thrombin generation in the presence of platelets. J Clin Med 2019; 9 (01) 92
  • 203 Branchford BR, Ng CJ, Neeves KB, Di Paola J. Microfluidic technology as an emerging clinical tool to evaluate thrombosis and hemostasis. Thromb Res 2015; 136 (01) 13-19
  • 204 de Breet CPDM, Zwaveling S, Vries MJA. et al. Thrombin generation as a method to identify the risk of bleeding in high clinical-risk patients using dual antiplatelet therapy. Front Cardiovasc Med 2021; 8: 679934
  • 205 Hulshof A-M, Olie RH, Vries MJA. et al. Rotational thromboelastometry in high-risk patients on dual antithrombotic therapy after percutaneous coronary intervention. Front Cardiovasc Med 2021; 8: 788137
  • 206 Brouns SLN, van Geffen JP, Heemskerk JWM. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets 2018; 29 (07) 662-669
  • 207 Qiu Y, Ahn B, Sakurai Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat Biomed Eng 2018; 2: 453-463
  • 208 Sakurai Y, Hardy ET, Ahn B. et al. A microengineered vascularized bleeding model that integrates the principal components of hemostasis. Nat Commun 2018; 9 (01) 509
  • 209 Mangin PH, Gardiner EE, Nesbitt WS. et al; Subcommittee on Biorheology. In vitro flow based systems to study platelet function and thrombus formation: recommendations for standardization: communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 2020; 18 (03) 748-752
  • 210 Sniderman J, Monagle P, Annich GM, MacLaren G. Hematologic concerns in extracorporeal membrane oxygenation. Res Pract Thromb Haemost 2020; 4 (04) 455-468
  • 211 Olson SR, Murphree CR, Zonies D. et al. Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation: a systematic review. ASAIO J 2021; 67 (03) 290-296
  • 212 Vaquer S, de Haro C, Peruga P, Oliva JC, Artigas A. Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann Intensive Care 2017; 7 (01) 51
  • 213 Noah MA, Peek GJ, Finney SJ. et al. Referral to an extracorporeal membrane oxygenation center and mortality among patients with severe 2009 influenza A(H1N1). JAMA 2011; 306 (15) 1659-1668
  • 214 Pham T, Combes A, Rozé H. et al; REVA Research Network. Extracorporeal membrane oxygenation for pandemic influenza A(H1N1)-induced acute respiratory distress syndrome: a cohort study and propensity-matched analysis. Am J Respir Crit Care Med 2013; 187 (03) 276-285
  • 215 Aubron C, DePuydt J, Belon F. et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann Intensive Care 2016; 6 (01) 97
  • 216 Brogan TV, Thiagarajan RR, Rycus PT, Bartlett RH, Bratton SL. Extracorporeal membrane oxygenation in adults with severe respiratory failure: a multi-center database. Intensive Care Med 2009; 35 (12) 2105-2114
  • 217 Aubron C, Cheng AC, Pilcher D. et al. Factors associated with outcomes of patients on extracorporeal membrane oxygenation support: a 5-year cohort study. Crit Care 2013; 17 (02) R73
  • 218 Murphy DA, Hockings LE, Andrews RK. et al. Extracorporeal membrane oxygenation-hemostatic complications. Transfus Med Rev 2015; 29 (02) 90-101
  • 219 Nguyen TP, Phan XT, Nguyen TH. et al. Major bleeding in adults undergoing peripheral extracorporeal membrane oxygenation (ECMO): prognosis and predictors. Crit Care Res Pract 2022; 2022: 5348835
  • 220 Cashen K, Meert K, Dalton H. Anticoagulation in neonatal ECMO: an enigma despite a lot of effort!. Front Pediatr 2019; 7: 366
  • 221 Hunt BJ, Parratt RN, Segal HC, Sheikh S, Kallis P, Yacoub M. Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg 1998; 65 (03) 712-718
  • 222 Heilmann C, Geisen U, Beyersdorf F. et al. Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive Care Med 2012; 38 (01) 62-68
  • 223 Palatianos GM, Foroulis CN, Vassili MI. et al. A prospective, double-blind study on the efficacy of the bioline surface-heparinized extracorporeal perfusion circuit. Ann Thorac Surg 2003; 76 (01) 129-135
  • 224 Bembea MM, Annich G, Rycus P, Oldenburg G, Berkowitz I, Pronovost P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: an international survey. Pediatr Crit Care Med 2013; 14 (02) e77-e84
  • 225 Paden ML, Conrad SA, Rycus PT, Thiagarajan RR. ELSO Registry. Extracorporeal Life Support Organization Registry Report 2012. ASAIO J 2013; 59 (03) 202-210
  • 226 Kim J, Koo B-K, Knoblich JA. Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 2020; 21 (10) 571-584
  • 227 Bock C, Boutros M, Camp JG. et al; Human Cell Atlas ‘Biological Network’ Organoids. The organoid cell atlas. Nat Biotechnol 2021; 39 (01) 13-17
  • 228 Veninga V, Voest EE. Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 2021; 39 (09) 1190-1201
  • 229 Khan AO, Reyat JS, Hill H. et al. Preferential uptake of SARS-CoV-2 by pericytes potentiates vascular damage and permeability in an organoid model of the microvasculature. Cardiovasc Res 2022; 118 (15) 3085-3096
  • 230 Khan AO, Colombo M, Reyat JS. et al. Human bone marrow organoids for disease modelling, discovery and validation of therapeutic targets in hematological malignancies. bioRxiv 2022. Accessed September 11, 2022 at: https://www.biorxiv.org/content/biorxiv/early/2022/03/16/2022.03.14.483815
  • 231 Campello E, Spiezia L, Adamo A, Simioni P. Thrombophilia, risk factors and prevention. Expert Rev Hematol 2019; 12 (03) 147-158
  • 232 Castoldi E, Hézard N, Mourey G. et al. Severe thrombophilia in a factor V-deficient patient homozygous for the Ala2086Asp mutation (FV Besançon). J Thromb Haemost 2021; 19 (05) 1186-1199
  • 233 Simioni P, Castoldi E, Lunghi B, Tormene D, Rosing J, Bernardi F. An underestimated combination of opposites resulting in enhanced thrombotic tendency. Blood 2005; 106 (07) 2363-2365
  • 234 Simioni P, Tormene D, Tognin G. et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med 2009; 361 (17) 1671-1675
  • 235 Wu W, Xiao L, Wu X. et al. Factor IX alteration p.Arg338Gln (FIX Shanghai) potentiates FIX clotting activity and causes thrombosis. Haematologica 2021; 106 (01) 264-268
  • 236 Simioni P, Cagnin S, Sartorello F. et al. Partial F8 gene duplication (factor VIII Padua) associated with high factor VIII levels and familial thrombophilia. Blood 2021; 137 (17) 2383-2393
  • 237 Takagi Y, Murata M, Kozuka T. et al. Missense mutations in the gene encoding prothrombin corresponding to Arg596 cause antithrombin resistance and thrombomodulin resistance. Thromb Haemost 2016; 116 (06) 1022-1031
  • 238 Djordjevic V, Kovac M, Miljic P. et al. A novel prothrombin mutation in two families with prominent thrombophilia – the first cases of antithrombin resistance in a Caucasian population. J Thromb Haemost 2013; 11 (10) 1936-1939
  • 239 Sivasundar S, Oommen AT, Prakash O. et al. Molecular defect of ‘Prothrombin Amrita’: substitution of arginine by glutamine (Arg553 to Gln) near the Na(+) binding loop of prothrombin. Blood Cells Mol Dis 2013; 50 (03) 182-183
  • 240 Bulato C, Radu CM, Campello E. et al. New prothrombin mutation (Arg596Trp, Prothrombin Padua 2) associated with venous thromboembolism. Arterioscler Thromb Vasc Biol 2016; 36 (05) 1022-1029
  • 241 Tuinenburg A, Mauser-Bunschoten EP, Verhaar MC, Biesma DH, Schutgens RE. Cardiovascular disease in patients with hemophilia. J Thromb Haemost 2009; 7 (02) 247-254
  • 242 Schutgens REG, Klamroth R, Pabinger I, Dolan G. ADVANCE working group. Management of atrial fibrillation in people with haemophilia–a consensus view by the ADVANCE Working Group. Haemophilia 2014; 20 (06) e417-e420
  • 243 Martin K, Key NS. How I treat patients with inherited bleeding disorders who need anticoagulant therapy. Blood 2016; 128 (02) 178-184
  • 244 Ferraris VA, Boral LI, Cohen AJ, Smyth SS, White II GC. Consensus review of the treatment of cardiovascular disease in people with hemophilia A and B. Cardiol Rev 2015; 23 (02) 53-68
  • 245 Shapiro S, Makris M. Haemophilia and ageing. Br J Haematol 2019; 184 (05) 712-720
  • 246 Guillet B, Cayla G, Lebreton A. et al. Long-term antithrombotic treatments prescribed for cardiovascular diseases in patients with hemophilia: results from the French registry. Thromb Haemost 2021; 121 (03) 287-296
  • 247 de Koning MLY, Fischer K, de Laat B, Huisman A, Ninivaggi M, Schutgens REG. Comparing thrombin generation in patients with hemophilia A and patients on vitamin K antagonists. J Thromb Haemost 2017; 15 (05) 868-875
  • 248 van den Ham HA, Souverein PC, Klungel OH. et al. Major bleeding in users of direct oral anticoagulants in atrial fibrillation: a pooled analysis of results from multiple population-based cohort studies. Pharmacoepidemiol Drug Saf 2021; 30 (10) 1339-1352
  • 249 Nagy M, Perrella G, Dalby A. et al. Flow studies on human GPVI-deficient blood under coagulating and noncoagulating conditions. Blood Adv 2020; 4 (13) 2953-2961
  • 250 Voors-Pette C, Lebozec K, Dogterom P. et al. Safety and tolerability, pharmacokinetics, and pharmacodynamics of ACT017, an antiplatelet GPVI (Glycoprotein VI) Fab. Arterioscler Thromb Vasc Biol 2019; 39 (05) 956-964
  • 251 Cooper N, Altomare I, Thomas MR. et al. Assessment of thrombotic risk during long-term treatment of immune thrombocytopenia with fostamatinib. Ther Adv Hematol 2021; 12: 2040 6207211010875
  • 252 Rayes J, Watson SP, Nieswandt B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J Clin Invest 2019; 129 (01) 12-23
  • 253 Nicolson PL, Welsh JD, Chauhan A, Thomas MR, Kahn ML, Watson SP. A rationale for blocking thromboinflammation in COVID-19 with Btk inhibitors. Platelets 2020; 31 (05) 685-690
  • 254 Toh C-H, Wang G, Parker AL. The aetiopathogenesis of vaccine-induced immune thrombotic thrombocytopenia. Clin Med (Lond) 2022; 22 (02) 140-144
  • 255 Smith CW, Montague SJ, Kardeby C. et al. Antiplatelet drugs block platelet activation by VITT patient serum. Blood 2021; 138 (25) 2733-2740
  • 256 Nicolson PLR, Nock SH, Hinds J. et al. Low-dose Btk inhibitors selectively block platelet activation by CLEC-2. Haematologica 2021; 106 (01) 208-219
  • 257 Tillman BF, Gruber A, McCarty OJT, Gailani D. Plasma contact factors as therapeutic targets. Blood Rev 2018; 32 (06) 433-448
  • 258 Zhang H, Löwenberg EC, Crosby JR. et al. Inhibition of the intrinsic coagulation pathway factor XI by antisense oligonucleotides: a novel antithrombotic strategy with lowered bleeding risk. Blood 2010; 116 (22) 4684-4692
  • 259 Cheng Q, Tucker EI, Pine MS. et al. A role for factor XIIa-mediated factor XI activation in thrombus formation in vivo. Blood 2010; 116 (19) 3981-3989
  • 260 Büller HR, Bethune C, Bhanot S. et al; FXI-ASO TKA Investigators. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N Engl J Med 2015; 372 (03) 232-240
  • 261 Verhamme P, Yi BA, Segers A. et al; ANT-005 TKA Investigators. Abelacimab for prevention of venous thromboembolism. N Engl J Med 2021; 385 (07) 609-617
  • 262 Weitz JI, Strony J, Ageno W. et al; AXIOMATIC-TKR Investigators. Milvexian for the prevention of venous thromboembolism. N Engl J Med 2021; 385 (23) 2161-2172
  • 263 Liuzzo G, Patrono C. A novel inhibitor of factor XIa as potential haemostasis-sparing anticoagulant for patients with atrial fibrillation. Eur Heart J 2022; 43 (25) 2354-2355
  • 264 Rao SV, Kirsch B, Bhatt DL. et al; PACIFIC AMI Investigators. A multicenter, phase 2, randomized, placebo-controlled, double-blind, parallel-group, dose-finding trial of the oral factor XIa inhibitor asundexian to prevent adverse cardiovascular outcomes after acute myocardial infarction. Circulation 2022; 146 (16) 1196-1206
  • 265 Shoamanesh A, Mundl H, Smith EE. et al; PACIFIC-Stroke Investigators. Factor XIa inhibition with asundexian after acute non-cardioembolic ischaemic stroke (PACIFIC-Stroke): an international, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet 2022; 400 (10357): 997-1007
  • 266 Thachil J. Lessons learnt from COVID-19 coagulopathy. eJHaem 2021; 2 (03) 577-584
  • 267 Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7 (06) e438-e440
  • 268 Thachil J, Srivastava A. SARS-2 coronavirus-associated hemostatic lung abnormality in COVID-19: is it pulmonary thrombosis or pulmonary embolism?. Semin Thromb Hemost 2020; 46 (07) 777-780
  • 269 Thachil J. All those D-dimers in COVID-19. J Thromb Haemost 2020; 18 (08) 2075-2076
  • 270 Thachil J. What do monitoring platelet counts in COVID-19 teach us?. J Thromb Haemost 2020; 18 (08) 2071-2072
  • 271 Thachil J, Tang N, Gando S. et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost 2020; 18 (05) 1023-1026
  • 272 Lacroix R, Sabatier F, Mialhe A. et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007; 110 (07) 2432-2439
  • 273 Dejouvencel T, Doeuvre L, Lacroix R. et al. Fibrinolytic cross-talk: a new mechanism for plasmin formation. Blood 2010; 115 (10) 2048-2056
  • 274 Cointe S, Vallier L, Esnault P. et al. Granulocyte microvesicles with a high plasmin generation capacity promote clot lysis and improve outcome in septic shock. Blood 2022; 139 (15) 2377-2391
  • 275 Lacroix R, Plawinski L, Robert S. et al. Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 2012; 97 (12) 1864-1872
  • 276 Lacroix R, Dubois C, Leroyer AS, Sabatier F, Dignat-George F. Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost 2013; 11 (Suppl. 01) 24-35
  • 277 Vallier L, Cointe S, Lacroix R. et al. Microparticles and fibrinolysis. Semin Thromb Hemost 2017; 43 (02) 129-134
  • 278 Cointe S, Harti Souab K, Bouriche T. et al. A new assay to evaluate microvesicle plasmin generation capacity: validation in disease with fibrinolysis imbalance. J Extracell Vesicles 2018; 7 (01) 1494482
  • 279 Vallier L, Bouriche T, Bonifay A. et al. Increasing the sensitivity of the human microvesicle tissue factor activity assay. Thromb Res 2019; 182: 64-74
  • 280 Franco C, Lacroix R, Vallier L. et al. A new hybrid immunocapture bioassay with improved reproducibility to measure tissue factor-dependent procoagulant activity of microvesicles from body fluids. Thromb Res 2020; 196: 414-424