Synthesis 2023; 55(21): 3417-3433
DOI: 10.1055/a-2050-4897
special topic
C–H Bond Functionalization of Heterocycles

C6–H Bond Functionalization of Indoles: A New Gate

Yunus Taskesenligil
,
We gratefully acknowledge Atatürk University Scientific Research Projects Coordination Unit, Turkey (FAD-2019-7025 and FAD-2018-6642) for financial support to the Department of Chemistry. Y.T. thanks Türkiye Bilimsel ve Teknolojik Araştirma Kurumu (the Scientific and Technological Research Council of Turkey; TUBITAK - BIDEB 2211/C National Ph.D. Scholarship Program in the Priority Fields in Science and Technology) for a scholarship.


Abstract

Indoles are valuable precursors in medicinal, bioorganic, and material chemistry and particularly serve as a platform for diversity. However, the scope of the C6-functionalization of indoles was limited until recently. In this short review, we summarize developments in the C6-functionalization reactions of indoles involving transition-metal-catalyzed functionalization and Brønsted and Lewis acid catalyzed processes. The regioselectivity is controlled by remote-C–H activation and hydrogen bond formation.

1 Introduction

2 Transition-Metal-Catalyzed Functionalization

3 Acid-Catalyzed Processes

4 Conclusion



Publication History

Received: 03 February 2023

Accepted after revision: 08 March 2023

Accepted Manuscript online:
08 March 2023

Article published online:
12 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Yang Y, Shi Z. Chem. Commun. 2018; 54: 1676
    • 2a Blaising J, Polyak SJ, Pécheur EI. Antiviral Res. 2014; 107: 84
    • 2b Zhang W, Ready JM. Nat. Prod. Rep. 2017; 34: 1010
  • 3 Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
  • 4 Sandtorv AH. Adv. Synth. Catal. 2015; 357: 2403
    • 5a Dutta U, Maiti S, Bhattacharya T, Maiti D. Science 2021; 372: 701
    • 5b Pandit S, Maiti S, Maiti D. Org. Chem. Front. 2021; 8: 4349
    • 5c Dey A, Sinha SK, Achar TK, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10820
    • 5d Dey A, Agasti S, Maiti D. Org. Biomol. Chem. 2016; 14: 5440
    • 5e Carvalho RL, Dias GG, Pereira CL. M, Ghosh P, Maiti D, da Silva Júnior EN. J. Braz. Chem. Soc. 2021; 32: 917
    • 5f Ali W, Prakash G, Maiti D. Chem. Sci. 2021; 12: 2735
    • 6a Leitch JA, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 5618
    • 6b Wen J, Shi Z. Acc. Chem. Res. 2021; 54: 1723
    • 6c Prabagar B, Yang Y, Shi Z. Chem. Soc. Rev. 2021; 50: 11249
    • 6d Pradhan S, De P B, Shah TA, Punniyamurthy T. Chem. Asian J. 2020; 15: 4184
    • 6e Kumar P, Nagtilak PJ, Kapur M. New J. Chem. 2021; 45: 13692
    • 7a Basak S, Paul T, Maharana PK, Debnath B, Punniyamurthy T. Synlett 2023; in press; DOI: 10.1055/a-1928-3466
    • 7b Kalepu J, Gandeepan P, Ackermann L, Pilarski LT. Chem. Sci. 2018; 9: 4203
    • 7c Shah TA, De P B, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 572
  • 8 Yang G, Lindovska P, Zhu D, Kim J, Wang P, Tang RY, Movassaghi M, Yu JQ. J. Am. Chem. Soc. 2014; 136: 10807
    • 9a Feng Y, Holte D, Zoller J, Umemiya S, Simke LR, Baran PS. J. Am. Chem. Soc. 2015; 137: 10160
    • 9b Miley GP, Rote JC, Silverman RB, Kelleher NL, Thomson RJ. Org. Lett. 2018; 20: 2369
    • 9c Nakamura H, Yasui K, Kanda Y, Baran PS. J. Am. Chem. Soc. 2019; 141: 1494
    • 9d Chattopadhyay B., Guria S., Hassan M. M., Dey S.; Research Square; 2022, preprint; DOI: 10.21203/rs.3.rs-1837437/v1
  • 10 Yang Y, Li R, Zhao Y, Zhao D, Shi Z. J. Am. Chem. Soc. 2016; 138: 8734
  • 11 Wang T, Zhou L, Yang Y, Zhang X, Shi Z, Wu YD. Org. Lett. 2018; 20: 6502
  • 12 Wang P, Farmer ME, Huo X, Jain P, Shen PX, Ishoey M, Bradner JE, Wisniewski SR, Eastgate MD, Yu JQ. J. Am. Chem. Soc. 2016; 138: 9269
  • 13 Shi X, Wang Z, Li Y, Li X, Li X, Shi D. Angew. Chem. Int. Ed. 2021; 60: 13871
  • 14 Leitch JA, McMullin CL, Mahon MF, Bhonoah Y, Frost CG. ACS Catal. 2017; 7: 2616
  • 15 Choi I, Müller V, Ackermann L. Tetrahedron Lett. 2021; 72: 153064
  • 16 Wang J, Li R, Dong Z, Liu P, Dong G. Nat. Chem. 2018; 10: 866
  • 17 Banerjee S, Vivek Kumar S, Punniyamurthy T. J. Org. Chem. 2020; 85: 2793
  • 18 Chu CK, Liang Y, Fu GC. J. Am. Chem. Soc. 2016; 138: 6404
  • 19 Wang D, Li M, Chen X, Wang M, Liang Y, Zhao Y, Houk KN, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 7066
  • 20 Prusty N, Banjare SK, Mohanty SR, Nanda T, Yadav K, Ravikumar PC. Org. Lett. 2021; 23: 9041
  • 21 Bhowmik S, Galeta J, Havel V, Nelson M, Faouzi A, Bechand B, Ansonoff M, Fiala T, Hunkele A, Kruegel AC, Pintar JE, Majumdar S, Javitch JA, Sames D. Nat. Commun. 2021; 12: 1
  • 22 Bastidas JR. M, Chhabra A, Feng Y, Oleskey TJ, Smith MR. III, Maleczka RE. Jr. ACS Catal. 2022; 12: 2694
  • 23 Simonetti M, Cannas DM, Panigrahi A, Kujawa S, Kryjewski M, Xie P, Larrosa I. Chem. Eur. J. 2017; 23: 549
  • 24 Jadhav PP, Kahar NM, Dawande SG. Org. Lett. 2021; 23: 8673
    • 25a Galabov B, Nalbantova D, Schleyer PV. R, Schaefer HF. III. Acc. Chem. Res. 2016; 49: 1191
    • 25b Stamenković N, Ulrih NP, Cerkovnik J. Phys. Chem. Chem. Phys. 2021; 23: 5051
  • 26 Moriya T, Hagio K, Yoneda N. Bull. Chem. Soc. Jpn. 1975; 48: 2217
  • 27 Hu W, Zhang F, Xu Z, Liu Q, Cui Y, Jia Y. Org. Lett. 2010; 12: 956
  • 28 Feng Y, Chen G. Angew. Chem. Int. Ed. 2010; 49: 958
  • 29 Liu H, Zheng C, You SL. J. Org. Chem. 2014; 79: 1047
  • 30 Zhou L.-J, Zhang Y.-C, Zhao J.-J, Shi F, Tu S.-J. J. Org. Chem. 2014; 79: 10390
  • 31 Legnani L, Cerai GP, Morandi B. ACS Catal. 2016; 6: 8162
  • 32 Ling Y, An D, Zhou Y, Rao W. Org. Lett. 2019; 21: 3396
  • 34 Wu Q, Li GL, Yang S, Shi XQ, Huang TZ, Du XH, Chen Y. Org. Biomol. Chem. 2019; 17: 3462
  • 35 Chen M, Sun J. Angew. Chem. Int. Ed. 2017; 56: 4583
  • 36 Yan J, Zhang Z, Chen M, Lin Z, Sun J. ChemCatChem 2020; 12: 5053
  • 37 Gao S, Xu X, Yuan Z, Zhou H, Yao H, Lin A. Eur. J. Org. Chem. 2016; 3006
  • 38 Zhou J, Zhu GD, Wang L, Tan FX, Jiang W, Ma ZG, Kang J.-C, Hou S.-H, Zhang SY. Org. Lett. 2019; 21: 8662
  • 39 Adris D, Taskesenligil Y, Akyildiz V, Essiz S, Saracoglu N. J. Org. Chem. 2023; 88: 3132
  • 40 Huang WJ, Ma YY, Liu LX, Wu B, Jiang GF, Zhou YG. Org. Lett. 2021; 23: 2393
  • 41 Kong L, Han X, Chen H, Sun H, Lan Y, Li X. ACS Catal. 2021; 11: 4929
  • 42 Zhang YY, Li L, Zhang XZ, Peng JB. Front. Chem. 2022; 10: 992398
  • 43 Montesinos-Magraner M, Vila C, Rendón-Patiño A, Blay G, Fernández I, Muñoz MC, Pedro JR. ACS Catal. 2016; 6: 2689
  • 44 Barik S, Khan NH, Ganguly B, Kureshy RI, Abdi SH, Bajaj HC. RSC Adv. 2015; 5: 69493
  • 45 Montesinos-Magraner M, Vila C, Blay G, Fernández I, Muñoz MC, Pedro JR. Org. Lett. 2017; 19: 1546
  • 46 Vila C, Rostoll-Berenguer J, Sánchez-García R, Blay G, Fernández I, Muñoz MC, Pedro JR. J. Org. Chem. 2018; 83: 6397
  • 47 Xiao M, Xu D, Liang W, Wu W, Chan AS, Zhao J. Adv. Synth. Catal. 2018; 360: 917
  • 48 Vila C, Tortosa A, Blay G, Muñoz MC, Pedro JR. New J. Chem. 2019; 43: 130
  • 49 Dong X, Tang Z, Ye L, Shi Z, Zhao Z, Li X. J. Org. Chem. 2020; 85: 11607
  • 50 Chu MM, Chen XY, Wang YF, Qi SS, Jiang ZH, Xu DQ, Xu ZY. J. Org. Chem. 2020; 85: 9491
  • 51 Wang XW, Huang WJ, Wang H, Wu B, Zhou YG. Org. Lett. 2022; 24: 1727
  • 52 Huang WJ, Chen ZP, Liu LX, Zhou YG, Wu B, Jiang GF. J. Heterocycl. Chem. 2022; 59: 1116