Synthesis 2023; 55(14): 2166-2176
DOI: 10.1055/a-2050-3720
paper

Metal-Free Synthesis of Guanidines from Thioureas in Water Reactions Mediated by Visible Light

Rose Malina Annuur
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Trin Saetan
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Mongkol Sukwattanasinitt
a   Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
,
Sumrit Wacharasindhu
b   Green Chemistry for Fine Chemical Production and Environmental Remediation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
› Author Affiliations
This research was financially supported by the National Research Council of Thailand (NRCT) (NRCT5-RSA63001-16). R.M.A. was supported by an ASEAN and Non-ASEAN Countries Chulalongkorn University Scholarship.


Abstract

Metal-free synthesis of guanidines from thioureas under visible-light irradiation in water was successfully developed. Using 1–5 mol% of inexpensive and commercially available phenazine ethosulfate as a photocatalyst in the presence of 1 wt% cetyltrimethylammonium bromide (CTAB) as surfactant with K2CO3 as an additive base, transformations of a variety of thioureas into the corresponding guanidines under visible-light irradiation were achieved in moderate to high yields. The advantages of this reaction include the use of a metal-free photocatalyst, water as a nontoxic solvent, and ease of operating at room temperature in an open-flask manner.

Supporting Information



Publication History

Received: 02 December 2022

Accepted after revision: 08 March 2023

Accepted Manuscript online:
08 March 2023

Article published online:
13 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R, Janks D, Schuessler RB, Moazami N, Nichols CG, Efimov IR. J. Mol. Cell. Cardiol. 2011; 51: 215
  • 2 Onoa GB, Moreno V, Freisinger E, Lippert B. J. Inorg. Biochem. 2002; 89: 237
  • 3 Guddat LW, Shan L, Broomell C, Ramsland PA, Fan Z.-c, Anchin JM, Linthicum DS, Edmundson AB. J. Mol. Biol. 2000; 302: 853
  • 4 Ramadas K, Srinivasan N. Tetrahedron Lett. 1995; 36: 2841
  • 5 Kent DR, Cody WL, Doherty AM. Tetrahedron Lett. 1996; 37: 8711
  • 6 Reddy NL, Fan W, Magar SS, Perlman ME, Yost E, Zhang L, Berlove D, Fischer JB, Burke-Howie K, Wolcott T, Durant GJ. J. Med. Chem. 1998; 41: 3298
  • 7 Feichtinger K, Sings HL, Baker TJ, Matthews K, Goodman M. J. Org. Chem. 1998; 63: 8432
  • 8 Ghosh AK, Hol WG. J, Fan E. J. Org. Chem. 2001; 66: 2161
  • 9 Zhang W.-X, Li D, Wang Z, Xi Z. Organometallics 2009; 28: 882
  • 10 Beaten M, Maes BU. W. Adv. Synth. Catal. 2016; 358: 826
  • 11 Cunha S, Costa MB, Napolitano HB, Lariucci C, Vencato I. Tetrahedron 2001; 57: 1671
  • 12 Chen J, Pattarawarapan M, Zhang AJ, Burgess K. J. Comb. Chem. 2000; 2: 276
  • 13 Maki T, Tsuritani T, Yasukata T. Org. Lett. 2014; 16: 1868
  • 14 Cunha S, Rodrigues MT. Jr. Tetrahedron Lett. 2006; 47: 6955
  • 15 Pattarawarapan M, Jaita S, Wangngae S, Phakhodee W. Tetrahedron Lett. 2016; 57: 1354
  • 16 Wangngae S, Pattarawarapan M, Phakhodee W. J. Org. Chem. 2017; 82: 10331
  • 17 Srisa J, Tankam T, Sukwattanasinitt M, Wacharasindhu S. Chem. Asian J. 2019; 14: 3335
  • 18 Marzo L, Pagire SK, Reiser O, König B. Angew Chem. Int. Ed. 2018; 57: 10034
  • 19 König B. Eur. J. Org. Chem. 2017; 1979
  • 20 Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
  • 21 Ghosh I, Marzo L, Das A, Shaikh R, König B. Acc. Chem. Res. 2016; 49: 1566
  • 22 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
  • 23 Pitre SP, Overman LE. Chem. Rev. 2022; 122: 1717
  • 24 Majek M, Jacobi von Wangelin A. Acc. Chem. Res. 2016; 49: 2316
  • 25 Shaikh RS, Düsel SJ. S, König B. ACS Catal. 2016; 6: 8410
  • 26 Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2019; 1379
  • 27 Yang D, Yan Q, Zhu E, Lv J, He W.-M. Chin. Chem. Lett. 2022; 33: 1798
  • 28 Okumura S, Uozumi Y. Org. Lett. 2021; 23: 7194
  • 29 Rattanangkool E, Sukwattanasinitt M, Wacharasindhu S. J. Org. Chem. 2017; 82: 13256
  • 30 Chan C.-M, Chow Y.-C, Yu W.-Y. Synthesis 2020; 52: 2899
  • 31 Kang Q.-Q, Wu W, Li Q, Wei W.-T. Green Chem. 2020; 22: 3060
  • 32 Saetan T, Sukwattanasinitt M, Wacharasindhu S. Org. Lett. 2020; 22: 7864
  • 33 Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. Chem Sci. 2021; 12: 15988
  • 34 Lipshutz BH, Ghorai S. Green Chem. 2014; 16: 3660
  • 35 Kawase M, Matsuoka K, Shinagawa T, Hamasaka G, Uozumi Y, Shimomura O, Ohtaka A. Synlett 2022; 33: 57
  • 36 Suzuka T, Niimi R, Uozumi Y. Synlett 2022; 33: 40
  • 37 Butler NR, Coyne AG. Chem. Rev. 2010; 110: 6302
  • 38 Kitanosono T, Kobayashi S. Chem. Eur. J. 2020; 26: 9408
  • 39 Harry NA, Radhika S, Neetha M, Anilkumar G. ChemistrySelect 2019; 4: 12337
  • 40 Peng K, Dong Z.-B. Adv. Synth. Catal. 2021; 363: 1185
  • 41 Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 3455
  • 42 Kitanosono T, Masuda K, Xu P, Kobayashi S. Chem. Rev. 2018; 118: 679
  • 43 Lipshutz BH, Ghorai S, Cortes-Cleget M. Chem. Eur. J. 2018; 24: 6672
  • 44 Cortes-Clerget M, Yu J, Kincaid JR. A, Walde P, Gallou F, Lipshutz BH. Chem. Sci. 2021; 12: 4237
  • 45 Shen T, Zhou S, Ruan J, Chen X, Liu X, Ge X, Qian C. Adv. Colloid Interface Sci. 2021; 287: 102299
  • 46 Borrego E, Caballero A, Perez PJ. Organometallics 2022; 41: 3084
  • 47 La Sorella G, Strukul G, Scarso A. Green Chem. 2015; 17: 644
  • 48 Bu M.-j, Lu G.-p, Jiang J, Cai C. Catal. Sci. Technol. 2018; 8: 3728
  • 49 Bu M.-j, Cai C, Gallou F, Lipshutz BH. Green Chem. 2018; 20: 1233
  • 50 Cannalire R, Santoro F, Russo C, Graziani G, Tron GC, Carotenuto A, Brancaccio D, Giustiniano M. ACS Org. Inorg. Au 2022; 2: 66
  • 51 Cybularczyk-Cecotka M, Predygier J, Crespi S, Szczepanik J, Giedyk M. ACS Catal. 2022; 12: 3543
  • 52 Ghosh R, Quayle JR. Anal. Biochem. 1979; 99: 112
  • 53 Jahn B, Jonasson NS. W, Hu H, Singer H, Pol A, Good NM, Op den Camp HJ. M, Martinez-Gomez NC, Daumann LJ. J. Biol. Inorg. Chem. 2020; 25: 199
  • 54 Leow D. Org. Lett. 2014; 16: 5812
  • 55 Jespersen D, Keen B, Day JI, Singh A, Briles J, Mullins D, Weaver JD. Org. Process Res. Dev. 2019; 23: 1087
  • 56 Ali AR, Ghosh H, Patel BK. Tetrahedron Lett. 2010; 51: 1019
  • 57 DBU was used as a base instead of K2CO3 to avoid the formation of PbCO3 in the reaction.