Synlett 2024; 35(04): 419-422
DOI: 10.1055/a-2047-8456
cluster
11th Singapore International Chemistry Conference (SICC-11)

Regioselective anti-Silyllithiation of Propargylic Amines

Tomohiko Sato
,
Somnath N. Karad
,
Jun Shimokawa
,
This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI (Grant nos. JP19F01033, JP19H00895, JP21H01934), and partly by the Japan Science and Technology Agency (JST), CREST (Grant no. JPMJCR19R4).


Abstract

The regioselective anti-silyllithiation of propargylic amines is developed to facilitate the efficient synthesis of alkenylsilanes. This reaction generates an alkenyllithium intermediate that is stabilized by the formation of a five-membered cyclic structure through intramolecular coordination of the nitrogen functional group. Upon subsequent treatment with an electrophile, the alkenyllithium intermediate is further functionalized to afford tetrasubstituted allylic amines bearing a β-silicon substituent.

Supporting Information



Publication History

Received: 06 February 2023

Accepted after revision: 06 March 2023

Accepted Manuscript online:
06 March 2023

Article published online:
12 April 2023

© 2023 . Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Organosilicon Chemistry: Novel Approaches and Reactions . Hiyama T, Oestreich M. Wiley-VCH; Weinheim: 2020
  • 2 Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
  • 3 Suginome M, Ito Y. Chem. Rev. 2000; 100: 3221
  • 4 Trost BM, Ball ZT. Synthesis 2005; 853
  • 5 Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
  • 6 Wilkinson JR, Nuyen CE, Carpenter TS, Harruff SR, Van Hoveln R. ACS Catal. 2019; 9: 8961
  • 7 Hayami H, Sato M, Kanemoto S, Morizawa Y, Oshima K, Nozaki H. J. Am. Chem. Soc. 1983; 105: 4491
  • 8 Tang J, Okada K, Shinokubo H, Oshima K. Tetrahedron 1997; 53: 5061
  • 9 Trost BM, Ball ZT, Jöge T. Angew. Chem. Int. Ed. 2003; 42: 3415
  • 10 Trost BM, Ball ZT. J. Am. Chem. Soc. 2005; 127: 17644
  • 11 Rummelt SM, Radkowski K, Roşca D.-A, Fürstner A. J. Am. Chem. Soc. 2015; 137: 5506
  • 12 Roşca D.-A, Radkowski K, Wolf LM, Wagh M, Goddard R, Thiel W, Fürstner A. J. Am. Chem. Soc. 2017; 139: 2443
  • 13 Karad SN, Saito H, Shimokawa J, Yorimitsu H. J. Org. Chem. 2022; in press DOI: 10.1021/acs.joc.2c01795.
  • 14 Richey HG. Jr, Moses LM, Domalski MS, Erickson WF, Heyn AS. J. Org. Chem. 1981; 46: 3773
  • 15 Richey HG. Jr, Heyn AS, Erickson WF. J. Org. Chem. 1983; 48: 3821
  • 16 Regioselective anti-Silyllithiation of Propargylic Amines 1; General Procedure The synthesis of 3aa is representative. A 20-mL Schlenk tube was charged with tert-butyl (3-phenylprop-2-yn-1-yl)carbamate (1a) (115.5 mg, 0.499 mmol) and toluene (5.0 mL) under a nitrogen atmosphere, and the resulting solution was cooled to –40 °C. To the mixture was added PhMe2SiLi (2a) (1.5 M in THF, 1.2 mL, 1.75 mmol, 3.5 equiv) dropwise. After stirring the mixture for 3 h at –40 °C, saturated aqueous NH4Cl (1.0 mL) was added at 0 °C. The resulting biphasic solution was extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane/CH2Cl2 = 1:2) to provide 3aa (148.6 mg, 0.404 mmol, 81%) as a pale yellow solid. 1H NMR (600 MHz, CDCl3): δ = 7.53–7.50 (m, 2 H), 7.40 (br s, 1 H), 7.38–7.34 (m, 3 H), 7.24–7.20 (m, 3 H), 7.15–7.12 (m, 2 H), 4.66 (br s, 1 H), 3.99 (d, J = 6.1 Hz, 2 H), 1.49 (s, 9 H), 0.20 (s, 6 H). 13C NMR (151 MHz, CDCl3): δ = 155.6, 143.6, 139.4, 139.1, 138.6, 133.8, 129.0, 128.6, 127.9, 127.8, 127.2, 79.3, 47.7, 28.5, –1.5. HRMS (APCI-MS, positive): m/z [M – tBu]+ calcd for ­C18H20NO2Si: 310.1258; found: 310.1269.
  • 17 Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
  • 18 Patterson AW, Ellman JA. J. Org. Chem. 2006; 71: 7110
  • 19 CCDC 1982977 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 20 Feng Q, Wu H, Li X, Song L, Chung LW, Wu Y.-D, Sun J. J. Am. Chem. Soc. 2020; 142: 13867
  • 21 Urbanaitė A, Jonušis M, Bukšnaitienė R, Balkaitis S, Čikotienė I. Eur. J. Org. Chem. 2015; 7091