Subscribe to RSS
DOI: 10.1055/a-2047-8355
Synthesis of 2,2′-Bipyridines via Dehydrogenative Dimerization of Pyridines Using Sodium Dispersion
We thank KOBELCO ECO-Solutions Co, Ltd. for financial support and for providing the sodium dispersion used in this study. This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT KAKENHI Grant-in-Aid for Scientific Research (B) No. 22H02125 to S.A.) and the Naohiko Fukuoka Memorial Foundation.
Dedicated to Professor Shigeru Yamago on the occasion of his 60th birthday
Abstract
2,2′-Bipyridine derivatives were synthesized by dehydrogenative dimerization of nonactivated pyridines using sodium dispersion. The reaction features operational simplicity, mild conditions, and the use of earth abundant and nontoxic sodium as the sole metal source. Importantly, transition metals are not required, which is beneficial in the fields of materials science and drug synthesis, where the contamination of the transition metals may cause significant problems.
Key words
2,2′-bipyridine - sodium dispersion - dehydrogenative coupling - transition-metal-free - sustainable chemistrySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2047-8355.
- Supporting Information
Publication History
Received: 05 February 2023
Accepted after revision: 06 March 2023
Accepted Manuscript online:
06 March 2023
Article published online:
17 April 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
- 1b Rubtsov AE, Malkov AV. Synthesis 2021; 53: 2559
- 1c Hagui W, Periasamy K, Soulé J.-F. Eur. J. Org. Chem. 2021; 5388
- 2a Tiecco M, Tingoli M, Testaferri L, Chianelli D, Wenkert E. Tetrahedron 1986; 42: 1475
- 2b Mongin F, Trecourt F, Gervais B, Mongin O, Queguiner G. J. Org. Chem. 2002; 67: 3272
- 2c Nissen F, Detert H. Eur. J. Org. Chem. 2011; 2845
- 2d Zhu Y, Zhang Q, Li S, Lin Q, Fu P, Zhang G, Zhang H, Shi R, Zhu W, Zhang C. J. Am. Chem. Soc. 2013; 135: 18750
- 3a Kawashima T, Takao T, Suzuki H. J. Am. Chem. Soc. 2007; 129: 11006
- 3b Nagaoka M, Kawashima T, Suzuki H, Takao T. Organometallics 2016; 35: 2348
- 4 Robo MT, Prinsell MR, Weix DJ. J. Org. Chem. 2014; 79: 10624
- 5 Yamada S, Kaneda T, Steib P, Murakami K, Itami K. Angew. Chem. Int. Ed. 2019; 58: 8341
- 7a Xie W.-W, Liu Y, Yuan R, Zhao D, Yu T.-Z, Zhang J, Da C.-S. Adv. Synth. Catal. 2016; 358: 994
- 7b Davin L, Clegg W, Kennedy AR, Probert MR, McLellan R, Hevia E. Chem. Eur. J. 2018; 24: 14830
- 8 Gros P, Fort Y, Caubère P. J. Chem. Soc., Perkin Trans. 1 1997; 3597
- 9a McGill CK. US 4267335, 1981 Chem. Abstr. 1980, 92, 110871
- 9b Adams CJ, James SL, Liu X, Raithby PR, Yellowlees LJ. J. Chem. Soc., Dalton Trans. 2000; 63
- 9c Awad DJ, Schilde U, Strauch P. Inorg. Chim. Acta 2011; 365: 127
- 10a De P B, Asako S, Ilies L. Synthesis 2021; 53: 3180
- 10b Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
- 10c Asako S, Kodera M, Nakajima H, Takai K. Adv. Synth. Catal. 2019; 361: 3120
- 10d Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Commun. Chem. 2021; 4: 76
- 10e Asako S, Takahashi I, Kurogi T, Murakami Y, Ilies L, Takai K. Chem. Lett. 2022; 51: 38
- 11 The sodium dispersion in paraffin oil that we used in this study has a concentration of ca. 26 wt%. It is nonpyrophoric and stable under air. This sodium dispersion is commercially available from Tokyo Chemical Industry.
- 12a Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390
- 12b Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
- 12c Tomashenko OA, Escudero-Adán EC, Belmonte MM, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
- 12d Zultanski SL, Fu GC. J. Am. Chem. Soc. 2013; 135: 624
- 12e Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 12f Weix DJ. Acc. Chem. Res. 2015; 48: 1767
- 13 Birch AJ, Karakhanov EA. J. Chem. Soc., Chem. Commun. 1975; 480
- 14 Hünig S, Wehner I. Synthesis 1989; 552
- 15 Gao Y, Yang C, Bai S, Liu X, Wu Q, Wang J, Jiang C, Qi X. Chem 2020; 6: 675
- 16 Szpakolski K, Latham K, Rix C, Rani RA, Kalantar-zadeh K. Polyhedron 2013; 52: 719
- 17 Nielsen AT. J. Org. Chem. 1970; 35: 2498
- 18 Procedure for Synthesis of 4,4′-Di-tert-butyl-2,2′-bipyridine (2a) In a dry Schlenk tube equipped with a glass-coated stirring bar, sodium dispersion (48.6 mg, 25.8 wt%, 0.54 mmol) was added dropwise to a mixture of THF (1.0 mL) and 4-tert-butylpyridine (67.2 mg, 0.50 mmol, 1 equiv) at rt under an argon atmosphere. After stirring at rt for 5 min, the reaction mixture was heated to 50 °C, and stirred for 6 h. The reaction mixture was quenched with H2O at 0 °C, and then stirred under atmospheric air at rt for 1 h. The resulting mixture was extracted with ethyl acetate, and the combined organic layers were dried (Na2SO4) and concentrated under reduced pressure. 1H NMR analysis of the crude reaction mixture in the presence of 1,1,2,2-tetrachloroethane as an internal standard indicated the formation of 2a in 83% yield. The crude mixture was purified by gel permeation chromatography (GPC) (eluent: CHCl3) to afford the title compound as a colorless solid (49.7 mg, 75%). 1H NMR (500 MHz, CDCl3): δ = 8.59 (dd, J = 5.5, 1.0 Hz, 2 H), 8.40 (dd, J = 2.0, 1.0 Hz, 2 H), 7.30 (dd, J = 5.0, 2.0 Hz, 2 H), 1.38 (s, 18 H). 13C{1H} NMR (126 MHz, CDCl3): δ = 161.1, 156.7, 149.2, 120.9, 118.4, 35.1, 30.8. HRMS (APCI+): m/z calcd for C18H25N2 [M + H]+: 269.2012; found: 269.2024.
- 19a Huang Y, Chan GH, Chiba S. Angew. Chem. Int. Ed. 2017; 56: 6544
- 19b Weidmann N, Ketels M, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 10748
- 19c Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
- 19d Maddock LC. H, Nixon T, Kennedy AR, Probert MR, Clegg W, Hevia E. Angew. Chem. Int. Ed. 2018; 57: 187
- 19e Ma Y, Woltornist RA, Algera RF, Collum DB. J. Org. Chem. 2019; 84: 9051
- 19f Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2019; 21: 4739
- 19g Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
- 19h Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Bull. Chem. Soc. Jpn. 2020; 93: 1171
- 19i Zhang J.-Q, Ye J, Huang T, Shinohara H, Fujino H, Han L.-B. Commun. Chem. 2020; 3: 1
- 19j Ye J, Zhang J.-Q, Saga Y, Onozawa S.-y, Kobayashi S, Sato K, Fukaya N, Han L.-B. Organometallics 2020; 39: 2682
- 19k Zhang J.-Q, Ikawa E, Fujino H, Naganawa Y, Nakajima Y, Han L.-B. J. Org. Chem. 2020; 85: 14166
- 19l Wang S, Kaga A, Yorimitsu H. Synlett 2021; 32: 219
- 19m Ito S, Takahashi F, Yorimitsu H. Asian J. Org. Chem. 2021; 10: 1440
- 19n Fukazawa M, Takahashi F, Yorimitsu H. Org. Lett. 2021; 23: 4613
- 19o Koyama S, Takahashi F, Saito H, Yorimitsu H. Org. Lett. 2021; 23: 8590
- 19p Inoue T, Yamamoto S, Sakagami Y, Horie M, Okano K, Mori A. Organometallics 2021; 40: 3506
- 19q Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 731
- 19r Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 14296
- 19s Maddock LC. H, Mu M, Kennedy AR, García-Melchor M, Hevia E. Angew. Chem. Int. Ed. 2021; 60: 15296
- 19t Maddock LC. H, Morton R, Kennedy AR, Hevia E. Chem. Eur. J. 2021; 27: 15181
- 19u Wang S, Kaga A, Kurogi T, Yorimitsu H. Org. Lett. 2022; 24: 1105
- 19v Inoue T, Kuwayama A, Okano K, Horie M, Mori A. Asian J. Org. Chem. 2022; 11: e202200253
- 19w Harenberg JH, Annapureddy RR, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2022; 61: e202203807
- 19x Bole LJ, Tortajada A, Hevia E. Angew. Chem. Int. Ed. 2022; 61: e202204262
- 19y Tortajada A, Hevia E. J. Am. Chem. Soc. 2022; 144: 20237
- 19z Logallo A, Mu M, García-Melchor M, Hevia E. Angew. Chem. Int. Ed. 2022; 61: e202213246
- 19aa Tortajada A, Anderson DE, Hevia E. Helv. Chim. Acta 2022; 105: e202200060
- 19ab Ma Y, Lui NM, Keresztes I, Woltornist RA, Collum DB. J. Org. Chem. 2022; 87: 14223