CC BY 4.0 · Organic Materials 2023; 5(02): 91-97
DOI: 10.1055/a-2041-5362
Supramolecular Chemistry
Short Communication

[4 + 4]-Imine Cage Compounds with Nitrogen-Rich Cavities and Tetrahedral Geometry

Ke Tian
§   These authors contributed equally to this work.
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Xubin Wang
§   These authors contributed equally to this work.
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Moritz P. Schuldt
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Sven M. Elbert
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
Frank Rominger
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
,
a   Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
› Author Affiliations


Abstract

Organic imine cage compounds have found a variety of different applications in several fields in materials science. To design tailor-made cages for corresponding applications, synthetic approaches to cages with tunable functionalities, sizes and shapes have to be found. Here we report a series of cages with truncated cubic shape and tetrahedral geometry possessing nitrogen-rich cavities.



Publication History

Received: 07 October 2022

Accepted after revision: 15 February 2023

Accepted Manuscript online:
23 February 2023

Article published online:
03 April 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
  • 2 Slater AG, Cooper AI. Science 2015; 348: 6238
  • 3 Beuerle F, Gole B. Angew. Chem. Int. Ed. 2018; 57: 4850
  • 4 Mastalerz M. Acc. Chem. Res. 2018; 51: 2411
  • 5 Little MA, Cooper AI. Adv. Funct. Mater. 2020; 30: 1909842
  • 6 Alexandre P-E, Zhang W-S, Rominger F, Elbert SM, Schröder RR, Mastalerz M. Angew. Chem. Int. Ed. 2020; 59: 19675
  • 7 Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Adv. Mater. 2012; 24: 6049
  • 8 Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR. Chem. Commun. 2013; 49: 8398
  • 9 Lauer J, Bhat A, Barwig C, Fritz N, Kirschbaum T, Rominger F, Mastalerz M. Chem. Eur. J. 2022; 28: e202201527
  • 10 Bushell AF, Budd PM, Attfield MP, Jones JTA, Hasell T, Cooper AI, Bernardo P, Bazzarelli F, Clarizia G, Jansen JC. Angew. Chem. Int. Ed. 2013; 52: 1253
  • 11 He A, Jiang Z, Wu Y, Hussain H, Rawle J, Briggs ME, Little MA, Livingston AG, Cooper AI. Nat. Mater. 2022; 21: 463
  • 12 Zhang G, Presly O, White F, Oppel IM, Mastalerz M. Angew. Chem. Int. Ed. 2014; 53: 1516
  • 13 Su K, Wang W, Du S, Ji C, Zhou M, Yuan D. J. Am. Chem. Soc. 2020; 142: 18060
  • 14 Martínez-Ahumada E, He D, Berryman V, López-Olvera A, Hernandez M, Jancik V, Martis V, Vera MA, Lima E, Parker DJ, Cooper AI, Ibarra IA, Liu M. Angew. Chem. Int. Ed. 2021; 60: 17556
  • 15 Ivanova S, Köster E, Holstein JJ, Keller N, Clever GH, Bein T, Beuerle F. Angew. Chem. Int. Ed. 2021; 60: 17455
  • 16 Elbert SM, Rominger F, Mastalerz M. Chem. Eur. J. 2014; 20: 16707
  • 17 Hasell T, Miklitz M, Stephenson A, Little MA, Chong SY, Clowes R, Chen L, Holden D, Tribello GA, Jelfs KE, Cooper AI. J. Am. Chem. Soc. 2016; 138: 1653
  • 18 Elbert SM, Regenauer NI, Schindler D, Zhang W-S, Rominger F, Schröder RR, Mastalerz M. Chem. Eur. J. 2018; 24: 11438
  • 19 Liu M, Zhang L, Little MA, Kapil V, Ceriotti M, Yang S, Ding L, Holden DL, Balderas-Xicohténcatl R, He D, Clowes R, Chong SY, Schütz G, Chen L, Hirscher M, Cooper AI. Science 2019; 366: 613
  • 20 Tian K, Elbert SM, Hu X-Y, Kirschbaum T, Zhang W-S, Rominger F, Schröder RR, Mastalerz M. Adv. Mater. 2022; 34: 2202290
  • 21 Liu C, Liu K, Wang C, Liu H, Wang H, Su H, Li X, Chen B, Jiang J. Nat. Commun. 2020; 11: 1047
  • 22 Kewley A, Stephenson A, Chen L, Briggs ME, Hasell T, Cooper AI. Chem. Mater. 2015; 27: 3207
  • 23 Zhang J-H, Xie S-M, Chen L, Wang B-J, He P-G, Yuan L-M. Anal. Chem. 2015; 87: 7817
  • 24 Koo J, Kim I, Kim Y, Cho D, Hwang I-C, Mukhopadhyay RD, Song H, Ko YH, Dhamija A, Lee H, Hwang W, Kim S, Baik M-H, Kim K. Chem 2020; 6: 3374
  • 25 Santolini V, Miklitz M, Berardo E, Jelfs KE. Nanoscale 2017; 9: 5280
  • 26 Schneider MW, Oppel IM, Griffin A, Mastalerz M. Angew. Chem. Int. Ed. 2013; 52: 3611
  • 27 Mastalerz M. Angew. Chem. Int. Ed. 2010; 49: 5042
  • 28 Lauer JC, Zhang WS, Rominger F, Schröder RR, Mastalerz M. Chem. Eur. J. 2018; 24: 1816
  • 29 Kunde T, Nieland E, Schröder HV, Schalley CA, Schmidt BM. Chem. Commun. 2020; 56: 4761
  • 30 Skowronek P, Gawronski J. Org. Lett. 2008; 10: 4755
  • 31 Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI. Nat. Mater. 2009; 8: 973
  • 32 Jiao T, Chen L, Yang D, Li X, Wu G, Zeng P, Zhou A, Yin Q, Pan Y, Wu B, Hong X, Kong X, Lynch VM, Sessler JL, Li H. Angew. Chem. Int. Ed. 2017; 56: 14545
  • 33 Cao N, Wang Y, Zheng X, Jiao T, Li H. Org. Lett. 2018; 20: 7447
  • 34 Jiang S, Bacsa J, Wu X, Jones JTA, Dawson R, Trewin A, Adams DJ, Cooper AI. Chem. Commun. 2011; 47: 8919
  • 35 Schneider MW, Oppel IM, Mastalerz M. Chem. Eur. J. 2012; 18: 4156
  • 36 Acharyya K, Mukherjee PS. Chem. Eur. J. 2014; 20: 1646
  • 37 Xu D, Warmuth R. J. Am. Chem. Soc. 2008; 130: 7520
  • 38 Wagner P, Rominger F, Zhang W-S, Gross JH, Elbert SM, Schröder RR, Mastalerz M. Angew. Chem. Int. Ed. 2021; 60: 8896
  • 39 Mukhopadhyay RD, Kim Y, Koo J, Kim K. Acc. Chem. Res. 2018; 51: 2730
  • 40 Hong S, Rohman MR, Jia J, Kim Y, Moon D, Kim Y, Ko YH, Lee E, Kim K. Angew. Chem. Int. Ed. 2015; 54: 13241
  • 41 Qu H, Wang Y, Li Z, Wang X, Fang H, Tian Z, Cao X. J. Am. Chem. Soc. 2017; 139: 18142
  • 42 Mastalerz M. Chem. Commun. 2008; 4756
  • 43 Schneider MW, Oppel IM, Ott HL, Lechner G, Hauswald H-JS, Stoll R, Mastalerz M. Chem. Eur. J. 2012; 18: 836
  • 44 Briggs ME, Jelfs KE, Chong SY, Lester C, Schmidtmann M, Adams DJ, Cooper AI. Cryst. Growth Des. 2013; 13: 4993
  • 45 Bourguignon C, Schindler D, Zhou G, Rominger F, Mastalerz M. Org. Chem. Front. 2021; 8: 3668
  • 46 Hasell T, Wu X, Jones JTA, Bacsa J, Steiner A, Mitra T, Trewin A, Adams DJ, Cooper AI. Nat. Chem. 2010; 2: 750
  • 47 Benke BP, Kirschbaum T, Graf J, Gross JH, Mastalerz M. Nat. Chem. 2023; 15: 413
  • 48 Hu X-Y, Zhang W-S, Rominger F, Wacker I, Schroder RR, Mastalerz M. Chem. Commun. 2017; 53: 8616
  • 49 Bhat AS, Elbert SM, Zhang W-S, Rominger F, Dieckmann M, Schröder RR, Mastalerz M. Angew. Chem. Int. Ed. 2019; 58: 8819
  • 50 Wang H, Jin Y, Sun N, Zhang W, Jiang J. Chem. Soc. Rev. 2021; 50: 8874
  • 51 Wang F, Sikma E, Duan Z, Sarma T, Lei C, Zhang Z, Humphrey SM, Sessler JL. Chem. Commun. 2019; 55: 6185
  • 52 Oh JH, Kim JH, Kim DS, Han HJ, Lynch VM, Sessler JL, Kim SK. Org. Lett. 2019; 21: 4336
  • 53 Pilgrim BS, Champness NR. ChemPlusChem 2020; 85: 1842
  • 54 Zhang D, Ronson TK, Nitschke JR. Acc. Chem. Res. 2018; 51: 2423
  • 55 Beer PD, Cheetham AG, Drew MGB, Fox OD, Hayes EJ, Rolls TD. Dalton Trans. 2003; 603
  • 56 Fox OD, Rolls TD, Drew MGB, Beer PD. Chem. Commun. 2001; 1632
  • 57 Wang X, Wang Y, Yang H, Fang H, Chen R, Sun Y, Zheng N, Tan K, Lu X, Tian Z, Cao X. Nat. Commun. 2016; 7: 12469
  • 58 Qu H, Huang Z, Dong X, Wang X, Tang X, Li Z, Gao W, Liu H, Huang R, Zhao Z, Zhang H, Yang L, Tian Z, Cao X. J. Am. Chem. Soc. 2020; 142: 16223
  • 59 Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. Nat. Chem. 2021; 13: 420
  • 60 Zhang D, Ronson TK, Greenfield JL, Brotin T, Berthault P, Léonce E, Zhu J-L, Xu L, Nitschke JR. J. Am. Soc. Chem. 2019; 141: 8339
  • 61 Rousseaux SAL, Gong JQ, Haver R, Odell B, Claridge TDW, Herz LM, Anderson HL. J. Am. Soc. Chem. 2015; 137: 12713
  • 62 Cai K, Lipke MC, Liu Z, Nelson J, Cheng T, Shi Y, Cheng C, Shen D, Han J-M, Vemuri S, Feng Y, Stern CL, Goddard WA, Wasielewski MR, Stoddart JF. Nat. Commun. 2018; 9: 5275
  • 63 Liu M, Chen L, Lewis S, Chong SY, Little MA, Hasell T, Aldous IM, Brown CM, Smith MW, Morrison CA, Hardwick LJ, Cooper AI. Nat. Commun. 2016; 7: 12750
  • 64 Hu D, Zhang J, Liu M. Chem. Commun. 2022; 58: 11333
  • 65 Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Chem. Rev. 2022; 122: 13636
  • 66 Chakraborty D, Mukherjee PS. Chem. Commun. 2022; 58: 5558
  • 67 McCaffrey R, Long H, Jin Y, Sanders A, Park W, Zhang W. J. Am. Soc. Chem 2014; 136: 1782
  • 68 Song Q, Wang WD, Hu X, Dong Z. Nanoscale 2019; 11: 21513
  • 69 Du Y-J, Zhou J-H, Tan L-X, Liu S-H, Zhao K, Gao Z-M, Sun J-K. ACS Appl. Nano Mater. 2022; 5: 7974