RSS-Feed abonnieren
DOI: 10.1055/a-2038-8899
Assessment of Rose Bengal Photodynamic Therapy on Viability and Proliferation of Human Keratolimbal Epithelial and Stromal Cells In Vitro
Untersuchung der photodynamischen Bengalrosa-Therapie auf die Viabilität und Proliferation humaner keratolimbaler Epithel- und Stromazellen in vitroAbstract
Purpose To investigate the effect of Rose Bengal photodynamic therapy (RB-PDT) on viability and proliferation of human limbal epithelial stem cells (T-LSCs), human corneal epithelial cells (HCE-T), human limbal fibroblasts (LFCs), and human normal and keratoconus fibroblasts (HCFs and KC-HCFs) in vitro.
Methods T-LSCs and HCE-T cell lines were used in this research. LFCs were isolated from healthy donor corneal limbi (n = 5), HCFs from healthy human donor corneas (n = 5), and KC-HCFs from penetrating keratoplasties of keratoconus patients (n = 5). After cell culture, RB-PDT was performed using 0.001% RB concentration and 565 nm wavelength illumination with 0.14 to 0.7 J/cm2 fluence. The XTT and the BrdU assays were used to assess cell viability and proliferation 24 h after RB-PDT.
Results RB or illumination alone did not change cell viability or proliferation in any of the cell types (p ≥ 0.1). However, following RB-PDT, viability decreased significantly from 0.17 J/cm2 fluence in HCFs (p < 0.001) and KC-HCFs (p < 0.0001), and from 0.35 J/cm2 fluence in T-LSCs (p < 0.001), HCE-T (p < 0.05), and LFCs ((p < 0.0001). Cell proliferation decreased significantly from 0.14 J/cm2 fluence in T-LSCs (p < 0.0001), HCE-T (p < 0.05), and KC-HCFs (p < 0.001) and from 0.17 J/cm2 fluence in HCFs (p < 0.05). Regarding LFCs proliferation, no values could be determined by the BrdU assay.
Conclusions Though RB-PDT seems to be a safe and effective treatment method in vivo, its dose-dependent phototoxicity on corneal epithelial and stromal cells has to be respected. The data and experimental parameters applied in this study may provide a reliable reference for future investigations.
Zusammenfassung
Ziel Die photodynamische Therapie kann eine alternative Behandlungsmethode bei antibiotikaresistenten Keratitiden darstellen. In dieser Studie wurde die Wirkung der photodynamischen Therapie mit Bengalrosa (RB-PDT) auf die Viabilität und Proliferation von humanen limbalen Epithelstammzellen (T-LSCs), humanen Hornhautepithelzellen (HCE-T), limbalen Fibroblasten (LFCs), normalen und Keratokonus-Fibroblasten (HCFs und KC-HCFs) in vitro untersucht.
Material und Methoden Für die Experimente an den limbalen Epithelstammzellen wurden 2 verschiedene Zelllinien (T-LSCs und HCE-T) verwendet. Die primären LFCs und HCFs wurden aus den Korneoskleralringen von Hornhautspendern, die KC-HCFs aus perforierenden Keratoplastiken von Keratokonus-Patienten isoliert und kultiviert (jeweils n = 5). Die RB-PDT wurde mit einer 0,001%igen RB-Konzentration bei einer Wellenlänge von 565 nm und einer Energiedosis von 0,14 bis 0,7 J/cm2 durchgeführt. Zur Bestimmung der Viabilität wurde 24 h nach der Bestrahlung der XTT-, zur Bestimmung der Proliferation der BrdU-Assay verwendet.
Ergebnisse Die ausschließliche Verwendung von RB oder Bestrahlung hatten keinen messbaren Einfluss auf die Viabilität oder Proliferation der unterschiedlichen Zelltypen (p ≥ 0,1). Unter Verwendung der RB-PDT mit einer Dosis von 0,17 J/cm2 sank die Viabilität jedoch in den HCFs (p < 0,001) und KC-HCFs (p < 0,0001), und bei einer Dosis von 0,35 J/cm2 in den T-LSCs (p < 0,001), HCE -T (p < 0,05) und LFCs (p < 0,0001). Die Zellproliferation verringerte sich signifikant ab einer Dosis von 0,14 J/cm2 in T-LSCs (p < 0,0001), HCE-T (p < 0,05) und KC- HCFs (p < 0,001) und ab einer Dosis von 0,17 J/cm2 Fluenz in HCFs (p < 0,05). Für die Proliferationsbestimmung der LFCs konnten mit dem BrdU-Assay keine Werte ermittelt werden.
Schlussfolgerung Die RB-PDT zeigt eine dosisabhängige Phototoxizität auf Hornhautepithel- und Stromazellen. Die in dieser Studie ermittelten Daten und experimentellen Parameter bieten eine verlässliche Referenz für zukünftige Untersuchungen für die photodynamische Therapie mit Bengalrosa.
Already known:
-
RB-PDT may be a potential treatment method of infectious keratitis and an effective corneal stiffening procedure.
-
In animal models, corneal RB-PDT was a safe treatment procedure. However, there is no previous report focusing on the cytotoxicity of RB-PDT on human corneal cells in vitro.
-
The effect of RB-PDT on viability and proliferation of corneal epithelial and stromal cells should be evaluated in vitro to provide a practical experimental model for future analysis.
Newly described:
-
The fluence-dependent phototoxicity of RB-PDT on human corneal epithelial and stromal cells should be kept in mind.
-
The data and the experimental parameters applied in this study provide a reliable reference for future investigations.
Publikationsverlauf
Eingereicht: 19. Dezember 2022
Angenommen: 16. Februar 2023
Accepted Manuscript online:
20. Februar 2023
Artikel online veröffentlicht:
19. Juni 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Bykhovskaya Y, Li X, Epifantseva I. et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest Ophthalmol Vis Sci 2012; 53: 4152-4157 DOI: 10.1167/iovs.11-9268.
- 2 McKay TB, Hjortdal J, Priyadarsini S. et al. Acute hypoxia influences collagen and matrix metalloproteinase expression by human keratoconus cells in vitro . PLoS One 2017; 12: 1-13 DOI: 10.1371/journal.pone.0176017.
- 3 Bykhovskaya Y, Margines B, Rabinowitz YS. Genetics in Keratoconus: where are we?. Eye Vis (Lond) 2016; 3: 1-10 DOI: 10.1186/s40662-016-0047-5.
- 4 Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003; 135: 620-627 DOI: 10.1016/s0002-9394(02)02220-1.
- 5 Hou Y, Le VNH, Clahsen T. et al. Photodynamic Therapy Leads to Time-Dependent Regression of Pathologic Corneal (Lymph) Angiogenesis and Promotes High-Risk Corneal Allograft Survival. Invest Ophthalmol Vis Sci 2017; 58: 5862-5869 DOI: 10.1167/iovs.17-22904.
- 6 Manayath GJ, Narendran V, Ganesh A. et al. Low-fluence photodynamic therapy for early onset choroidal neovascular membrane following laser in situ keratomileusis. Indian J Ophthalmol 2012; 60: 584-585
- 7 Alarcon EI, Poblete H, Roh HG. et al. Rose Bengal binding to collagen and tissue photobonding. ACS Omega 2017; 2: 6646-6657 DOI: 10.1021/acsomega.7b00675.
- 8 Cherfan D, Verter EE, Melki S. et al. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci 2013; 54: 3426-3433 DOI: 10.1167/iovs.12-11509.
- 9 Inguscio V, Panzarini E, Dini L. Autophagy Contributes to the Death/Survival Balance in Cancer PhotoDynamic Therapy. Cells 2012; 1: 464-491 DOI: 10.3390/cells1030464.
- 10 Dobson J, de Queiroz GF, Golding JP. Photodynamic therapy and diagnosis: Principles and comparative aspects. Vet J 2018; 233: 8-18 DOI: 10.1016/j.tvjl.2017.11.012.
- 11 Kessel D, Reiners JJ. Photodynamic therapy: autophagy and mitophagy, apoptosis and paraptosis. Autophagy 2020; 16: 2098-2101 DOI: 10.1080/15548627.2020.1783823.
- 12 Santhiago MR, Randleman JB. The biology of corneal cross-linking derived from ultraviolet light and riboflavin. Exp Eye Res 2021; 202: 108355 DOI: 10.1016/j.exer.2020.108355.
- 13 Fokam D, Hoskin D. Instrumental role for reactive oxygen species in the inflammatory response. Front Biosci (Landmark Ed) 2020; 25: 1110-1119 DOI: 10.2741/4848.
- 14 Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2018; 80: 50-64 DOI: 10.1016/j.semcdb.2017.05.023.
- 15 Korb DR, Herman JP, Finnemore VM. et al. An evaluation of the efficacy of fluorescein, rose bengal, lissamine green, and a new dye mixture for ocular surface staining. Eye Contact Lens 2008; 34: 61-64 DOI: 10.1097/ICL.0b013e31811ead93.
- 16 Martinez JD, Arrieta E, Naranjo A. et al. Rose Bengal Photodynamic Antimicrobial Therapy: A Pilot Safety Study. Cornea 2021; 40: 1036-1043 DOI: 10.1097/ICO.0000000000002717.
- 17 Martinez JD, Naranjo A, Amescua G. et al. Human Corneal Changes After Rose Bengal Photodynamic Antimicrobial Therapy for Treatment of Fungal Keratitis. Cornea 2018; 37: e46 DOI: 10.1097/ICO.0000000000001701.
- 18 Wertheimer CM, Elhardt C, Kaminsky SM. et al. Enhancing Rose Bengal-Photosensitized Protein Crosslinking in the Cornea. Invest Ophthalmol Vis Sci 2019; 60: 1845-1852 DOI: 10.1167/iovs.19-26604.
- 19 Germann JA, Martínez-Enríquez E, Martínez-García MC. et al. Corneal collagen ordering after in vivo Rose Bengal and riboflavin cross-linking. Invest Ophthalmol Vis Sci 2020; 61: 28 DOI: 10.1167/iovs.61.3.28.
- 20 Roux LN, Petit I, Domart R. et al. Modeling of Aniridia-Related Keratopathy by CRISPR/Cas9 Genome Editing of Human Limbal Epithelial Cells and Rescue by Recombinant PAX6 Protein. Stem Cells 2018; 36: 1421-1429 DOI: 10.1002/stem.2858.
- 21 Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res 1998; 66: 97-103 DOI: 10.1006/exer.1997.0410.
- 22 Brummer G, Littlechild S, McCall S. et al. The role of nonenzymatic glycation and carbonyls in collagen cross-linking for the treatment of keratoconus. Invest Ophthalmol Vis Sci 2011; 52: 6363-6369 DOI: 10.1167/iovs.11-7585.
- 23 Redmond RW, Kochevar IE. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem Photobiol 2019; 95: 1097-1115 DOI: 10.1111/php.13126.
- 24 Ni T, Senthil-Kumar P, Dubbin K. et al. A photoactivated nanofiber graft material for augmented Achilles tendon repair. Lasers Surg Med 2012; 44: 645-652 DOI: 10.1002/lsm.22066.
- 25 Chan BP, Kochevar IE, Redmond RW. Enhancement of porcine skin graft adherence using a light-activated process. J Surg Res 2002; 108: 77-84 DOI: 10.1006/jsre.2002.6516.
- 26 Fairbairn NG, Ng-Glazier J, Meppelink AM. et al. Light-Activated Sealing of Nerve Graft Coaptation Sites Improves Outcome following Large Gap Peripheral Nerve Injury. Plast Reconstr Surg 2015; 136: 739-750 DOI: 10.1097/PRS.0000000000001617.
- 27 Bekesi N, Kochevar IE, Marcos S. Corneal biomechanical response following collagen cross-linking with Rose Bengal-green light and riboflavin-UVA. Invest Ophthalmol Vis Sci 2016; 57: 992-1001 DOI: 10.1167/iovs.15-18689.
- 28 Lorenzo-Martín E, Gallego-Muñoz P, Ibares-Frías L. et al. Rose Bengal and Green Light Versus Riboflavin–UVA Cross-Linking: Corneal Wound Repair Response. Invest Ophthalmol Vis Sci 2018; 59: 4821-4830 DOI: 10.1167/iovs.18-24881.
- 29 Gallego-Muñoz P, Ibares-Frías L, Lorenzo E. et al. Corneal Wound Repair After Rose Bengal and Green Light Crosslinking: Clinical and Histologic Study. Invest Ophthalmol Vis Sci 2017; 58: 3471-3480 DOI: 10.1167/iovs.16-21365.
- 30 Verter EE, Gisel TE, Yang P. et al. Light-initiated bonding of amniotic membrane to cornea. Invest Ophthalmol Vis Sci 2011; 52: 9470-9477 DOI: 10.1167/iovs.11-7248.
- 31 Redmond RW, Kochevar IE. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem Photobiol 2019; 95: 1097-1115 DOI: 10.1111/php.13126.
- 32 Zhu H, Alt C, Webb RH. et al. Corneal Crosslinking With Rose Bengal and Green Light: Efficacy and Safety Evaluation. Cornea 2016; 35: 1234-1241 DOI: 10.1097/ICO.0000000000000916.
- 33 Wollensak G, Spoerl E, Wilsch M. et al. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea 2004; 23: 43-49 DOI: 10.1097/00003226-200401000-00008.
- 34 Spoerl E, Mrochen M, Sliney D. et al. Safety of UVA-riboflavin cross-linking of the cornea. Cornea 2007; 26: 385-389 DOI: 10.1097/ICO.0b013e3180334f78.
- 35 Krüger A, Hovakimyan M, Ramírez Ojeda DF. et al. Combined nonlinear and femtosecond confocal laser-scanning microscopy of rabbit corneas after photochemical cross-linking. Invest Ophthalmol Vis Sci 2011; 52: 4247-4255 DOI: 10.1167/iovs.10-7112.
- 36 Naranjo A, Pelaez D, Arrieta E. et al. Cellular and molecular assessment of rose bengal photodynamic antimicrobial therapy on keratocytes, corneal endothelium and limbal stem cell niche. Exp Eye Res 2019; 188: 107808 DOI: 10.1016/j.exer.2019.107808.
- 37 Vanden Berghe T, Vanlangenakker N, Parthoens E. et al. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 2010; 17: 922-930 DOI: 10.1038/cdd.2009.184.
- 38 Levine H, Sepulveda-Beltran PA, Amescua G. Rose Bengal Photodynamic Antimicrobial Therapy as potential adjuvant treatment for Serratia marcescens corneal ulcer. Am J Ophthalmol 2021; 231: e1-e2 DOI: 10.1016/j.ajo.2021.07.007.
- 39 Song X, Stachon T, Wang J. et al. Viability, apoptosis, proliferation, activation, and cytokine secretion of human keratoconus keratocytes after cross-linking. Biomed Res Int 2015; 2015: 254237 DOI: 10.1155/2015/254237.
- 40 Stachon T, Latta L, Seitz B. et al. Hypoxic stress increases NF-κB and iNOS mRNA expression in normal, but not in keratoconus corneal fibroblasts. Graefes Arch Clin Exp Ophthalmol 2021; 259: 449-458 DOI: 10.1007/s00417-020-04900-8.
- 41 Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998; 25: 434-456 DOI: 10.1016/s0891-5849(98)00092-6.
- 42 Ridnour LA, Thomas DD, Donzelli S. et al. The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 2006; 8: 1329-1337 DOI: 10.1089/ars.2006.8.1329.
- 43 Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy. Redox Biol 2015; 6: 311-317 DOI: 10.1016/j.redox.2015.07.015.
- 44 Bazak J, Korytowski W, Girotti AW. Bystander Effects of Nitric Oxide in Cellular Models of Anti-Tumor Photodynamic Therapy. Cancers (Basel) 2019; 11: 1674 DOI: 10.3390/cancers11111674.
- 45 Ainscough SL, Linn ML, Barnard Z. et al. Effects of fibroblast origin and phenotype on the proliferative potential of limbal epithelial progenitor cells. Exp Eye Res 2011; 92: 10-19 DOI: 10.1016/j.exer.2010.10.004.
- 46 Teranishi S, Kimura K, Kawamoto K. et al. Protection of human corneal epithelial cells from hypoxia-induced disruption of barrier function by keratinocyte growth factor. Invest Ophthalmol Vis Sci 2008; 49: 2432-2437 DOI: 10.1167/iovs.07-1464.
- 47 Cai Y, Wang W, Qiu Y. et al. KGF inhibits hypoxia-induced intestinal epithelial cell apoptosis by upregulating AKT/ERK pathway-dependent E-cadherin expression. Biomed Pharmacother 2018; 105: 1318-1324 DOI: 10.1016/j.biopha.2018.06.091.
- 48 Crane AM, Bhattacharya SK. The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol Biol 2013; 1014: 65-70 DOI: 10.1007/978-1-62703-432-6_4.
- 49 Chen SL, Cai SR, Zhang XH. et al. Targeting CRMP-4 by lentivirus-mediated RNA interference inhibits SW480 cell proliferation and colorectal cancer growth. Exp Ther Med 2016; 12: 2003-2008 DOI: 10.3892/etm.2016.3588.
- 50 Masoud Y, Ramin S, Mahboobeh R. et al. Effect of Lithium and Valproate on Proliferation and Migration of Limbal Epithelial Stem/Progenitor Cells. Curr Eye Res 2019; 44: 154-161 DOI: 10.1080/02713683.2018.1521978.
- 51 Sun X, Kaufman PD. Ki-67: more than a proliferation marker. Chromosoma 2018; 127: 175-186 DOI: 10.1007/s00412-018-0659-8.
- 52 Nakatsu MN, Ding Z, Ng MY. et al. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci 2011; 52: 4734-4741 DOI: 10.1167/iovs.10-6486.
- 53 Araki-Sasaki K, Ohashi Y, Sasabe T. et al. An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 1995; 36: 614-621
- 54 Rubelowski AK, Latta L, Katiyar P. et al. HCE-T cell line lacks cornea-specific differentiation markers compared to primary limbal epithelial cells and differentiated corneal epithelium. Graefes Arch Clin Exp Ophthalmol 2020; 258: 565-575 DOI: 10.1007/s00417-019-04563-0.
- 55 Bath C, Yang S, Muttuvelu D. et al. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation. Stem Cell Res 2013; 10: 349-360 DOI: 10.1016/j.scr.2013.01.004.
- 56 Wang L, González S, Dai W. et al. Effect of hypoxia-regulated polo-like kinase 3 (Plk3) on human limbal stem cell differentiation. J Biol Chem 2016; 291: 16519-16529 DOI: 10.1074/jbc.M116.725747.
- 57 Wertheimer CM, Mendes B, Pei Q. et al. Arginine as an Enhancer In Rose Bengal Photosensitized Corneal Crosslinking. Transl Vis Sci Technol 2020; 9: 1-11 DOI: 10.1167/tvst.9.8.24.