intensiv 2023; 31(03): 126-131
DOI: 10.1055/a-2036-4367
Intensivpflege
Mobilität erhalten

Die neuronale Plastizität auf Intensivstation – know the normal!

Sindy Albrecht

„Use it or lose it!“ – wir alle kennen diesen Satz: Wenn wir aufhören, etwas regelmäßig zu tun, dann haben wir zwar noch eine Grundvorstellung, aber wir benötigen beim Wiederaufnehmen der Tätigkeit erst mal Zeit, um uns wieder mit den Bewegungen vertraut zu machen. Je länger die Patienten auf Intensivstationen immobil und in ihren Bewegungen eingeschränkt sind, desto mehr verlernen sie ihre alltäglichen (Bewegungs-)Strategien. Eine wichtige Rolle spielt hier die neuronale Plastizität.



Publication History

Article published online:
08 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Adkins DL, Boychuk J, Remple MS. et al Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol (1985), 2006; 101 (06) 1776-82
  • 2 Ungerleider LG, Doyon J, Karni A. Imaging brain plasticity during motor skill learning. Neurobiol Learn Mem 2002; 78 (03) 553-64
  • 3 Langer N, Hänggi J, Müller NA. et al Effects of limb immobilization on brain plasticity. Neurology 2012; 78 (03) 182-8
  • 4 Liu J, Wang X, Shigenaga MK. et al Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J 1996; 10 (13) 1532-8
  • 5 Koukourikos K, Tsaloglidou A, Kourkouta L. Muscle atrophy in intensive care unit patients. Acta Inform Med 2014; 22 (06) 406-10
  • 6 Hashem MD, Parker AM, Needham DM. Early mobilization and rehabilitation of patients who are critically ill. Chest 2016; 150 (03) 722-31
  • 7 Teismann IK, Steinstraeter O, Stoeckigt K. et al Functional oropharyngeal sensory disruption interferes with the cortical control of swallowing. BMC Neuroscience 2007; 08 (01) 1-8
  • 8 Ghiani A, Tsitouras K, Paderewska J. et al Incidence, causes, and predictors of unsuccessful decannulation following prolonged weaning. Ther Adv Chronic Dis. 2022; 13: 20406223221109655
  • 9 Helsen K, Goubert L, Peters ML. et al Observational learning and pain-related fear: an experimental study with colored cold pressor tasks. J Pain 2011; 12 (12) 1230-9
  • 10 Stecco A, Gesi M, Stecco C. et al Fascial components of the myofascial pain syndrome. Curr Pain Headache Rep 2013; 17 (08) 352
  • 11 TEAM Study Investigators and the ANZICS Clinical Trials Group Hodgson CL. et al Early active mobilization during mechanical ventilation in the ICU. N Engl J Med 2022; 387 (19) 1747-58
  • 12 Zheng G, Hong S, Hayes JM. et al Chronic stress and peripheral pain: Evidence for distinct, region-specific changes in visceral and somatosensory pain regulatory pathways. Exp Neurol 2015; 273: 301-11
  • 13 Gellner AK, Sitter A, Rackiewicz M. et al Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12 (01) 91
  • 14 Song J, Qian Z, Zhang H. et al Diaphragmatic ultrasonography-based rapid shallow breathing index for predicting weaning outcome during a pressure support ventilation spontaneous breathing trial. BMC Pulm Med 2022; 337: e1-e13
  • 15 Held R. Plasticity in sensory-motor systems. Sci Am 1965; 213 (05) 84-94
  • 16 Adams JA. A closed-loop theory of motor learning. J Mot Behav 1971; 03 (02) 111-49
  • 17 Hall KG, Magill RA. Variability of practice and contextual interference in motor skill learning. J Mot Behav 1995; 27 (04) 299-309