Subscribe to RSS
DOI: 10.1055/a-2035-6420
Bimetallic Catalyzed Synthesis of 2-Arylindoles
The authors thank the Fundação para a Ciência e Tecnologia (FCT, projects PTDC/QUI-QOR/0712/2020 and PTDC/QUI-QIN/0359/2021, fellowship PD/BD/142876/2018 (A.S.S.)). The authors also thank the support by the Laboratório Associado para a Química Verde (LAQV), which is financed by national funds from FCT/Ministério da Ciência, Tecnologia e Ensino Superior and MOSTMICRO-ITQB, UIDB/04612/2020 and UIPD/04612/2020. The National NMR Facility is supported by FCT, ROTEIRO/0031/2013–PINFRA/22161/2016, co-financed by FEDER through COMPETE 2020, POCI, and PORL and FCT through PID-DAC) and CERMAX (022162).
Abstract
A bimetallic synthesis of 2-arylindoles from alcohols and anilines is described. The dehydrogenation or oxidation of a secondary alcohol was performed by Ni- or Mn-catalyzed reactions, respectively. The formed ketone was converted into an imine intermediate that was later cyclized to the corresponding 2-arylindole by a Pd-catalyzed oxidative cyclization. A series of 2-arylindoles were prepared without isolation of the intermediates generated. The compatibility of the catalysts was investigated, and the optimized protocol opens room for the integration of Earth-abundant metals and palladium complexes to improve the sustainability of the synthesis of N-heterocycles.
Key words
manganese - nickel - palladium - bimetallic catalysis - indole - oxidation - C–H activationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2035-6420.
- Supporting Information
Publication History
Received: 03 November 2022
Accepted after revision: 14 February 2023
Accepted Manuscript online:
14 February 2023
Article published online:
17 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 2 Santos AS, Raydan D, Cunha JC, Viduedo N, Silva AM. S, Marques MM. B. Catalysts 2021; 11: 1108
- 3 Singh TP, Singh OM. Mini-Rev. Med. Chem. 2017; 18: 9
- 4 Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
- 5 Pires MJ. D, Poeira DL, Purificação SI, Marques MM. B. Org. Lett. 2016; 18: 3250
- 6 Santos AS, Martins MM, Mortinho AC, Silva AM. S, Marques MM. B. Tetrahedron Lett. 2020; 61: 152303
- 7 Raydan D, Friães S, Viduedo N, Santos AS, Gomes CS. B, Royo B, Marques MM. B. Synlett 2022; 33: 1290
- 8 Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
- 9 Esteruelas MA, Honczek N, Oliván M, Oñate E, Valencia M. Organometallics 2011; 30: 2468
- 10 Mukherjee A, Nerush A, Leitus G, Shimon LJ. W, Ben-David Y, Espinosa-Jalapa NA, Milstein D. J. Am. Chem. Soc. 2016; 138: 4298
- 11 Mastalir M, Glatz M, Gorgas N, Stöger B, Pittenauer E, Allmaier G, Veiros LF, Kirchner K. Chem. Eur. J. 2016; 22: 12316
- 12 Fertig R, Irrgang T, Freitag F, Zander J, Kempe R. ACS Catal. 2018; 8: 8525
- 13 Das K, Mondal A, Pal D, Srivastava HK, Srimani D. Organometallics 2019; 38: 1815
- 14 Ye D, Liu Z, Sessler JL, Lei C. Chem. Commun. 2020; 56: 11811
- 15 Geetha R, Kumar M, Kulkarni NV, Jones WD. Acta Chim. Slov. 2021; 68: 955
- 16 Chakraborty S, Piszel PE, Brennessel WW, Jones WD. Organometallics 2015; 34: 5203
- 17 Pinto MF, Olivares M, Vivancos Á, Guisado-Barrios G, Albrecht M, Royo B. Catal. Sci. Technol. 2019; 9: 2421
- 18 Liu XH, Yu HY, Xue C, Zhou XT, Ji HB. Chin. J. Chem. 2020; 38: 458
- 19 Neshat A, Osanlou F, Kakavand M, Mastrorilli P, Schingaro E, Mesto E, Todisco S. Polyhedron 2021; 193: 114873
- 20 Barluenga J, Fernández MA, Aznar F, Valdés C. Chem. Eur. J. 2005; 11: 2276
- 21 Wei Y, Deb I, Yoshikai N. J. Am. Chem. Soc. 2012; 134: 9098
- 22 Neumann JJ, Rakshit S, Dröge T, Würtz S, Glorius F. Chem. Eur. J. 2011; 17: 7298
- 23 Würtz S, Rakshit S, Neumann JJ, Dröge T, Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
- 24 Lai R, Wu X, Lv S, Zhang C, He M, Chen Y, Wang Q, Hai L, Wu Y. Chem. Commun. 2019; 55: 4039
- 25 Wei Y, Liang Y, Yu K, Li B, Xu S, Song H, Wang B. Chem. Commun. 2014; 50: 6130
- 26 Zhou J, Li J, Li Y, Wu C, He G, Yang Q, Zhou Y, Liu H. Org. Lett. 2018; 20: 7645
- 27 Pye DR, Mankad NP. Chem. Sci. 2017; 8: 1705
- 28 Mao J, Wang Z, Xu X, Liu G, Jiang R, Guan H, Zheng Z, Walsh PJ. Angew. Chem. Int. Ed. 2019; 58: 11033
- 29 Yan J, Zheng L, Wang J, Liu X, Hu Y. J. Org. Chem. 2022; 87: 6347
- 30 Long H, Xu K, Chen S, Lin J, Wu D, Wu B, Tian X, Ackermann L. Org. Lett. 2019; 21: 3053
- 31 Peña-López M, Neumann H, Beller M. Chem. Eur. J. 2014; 20: 1818
- 32 Zarghi A, Tahghighi A, Soleimani Z, Daraie B, Dadrass OG, Hedayati M. Sci. Pharm. 2008; 76: 361