RSS-Feed abonnieren
DOI: 10.1055/a-2034-4371
Update zur funktionellen Zusatzdiagnostik bei Multipler Sklerose und Neuromyelitis Spektrum Erkrankungen
Update on functional diagnostics in multiple sclerosis and neuromyelitis spectrum disorder![](https://www.thieme-connect.de/media/klinneuro/202302/lookinside/thumbnails/20344371_10-1055-a-2034-4371-1.jpg)
Zusammenfassung
Abstract
Background Assessment of prognosis and disease course in multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) remains difficult based on clinical evaluation, fluid biomarker and neuroimaging. Multimodal evoked potentials (mmEP) to quantify central conduction deficits, optical coherence tomography (OCT) to measure structural changes of the retina, repetitive transcranial magnetic stimulation (rTMS) to evaluate cortical plasticity and neuropsychological examination to characterize cognitive performance may add important complementary information.
Methodology Short reviews on the use of mmEP, OCT, rTMS and neuropsychology in MS and NMOSD with clinical examples.
Conclusion Functional diagnostics and OCT play an important role in the differentiated evaluation of people with MS and NMOSD for prognosis, monitoring of the disease course and individualized treatment strategies.
Publikationsverlauf
Artikel online veröffentlicht:
31. Mai 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Halliday AM, Mcdonald WI, Mushin J. Delayed visual evoked response in optic neuritis. Lancet (London, England) 1972; 1: 982-985
- 2 Poser CM, Paty DW, Scheinberg L. et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 1983; 13: 227-231
- 3 Thompson AJ, Montalban X, Barkhof F. et al. Diagnostic criteria for primary progressive multiple sclerosis: A position paper. Ann Neurol 2000; 47: 831-835
- 4 McDonald WI, Compston A, Edan G. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127
- 5 Vidal-Jordana A, Rovira A, Arrambide G. et al. Optic Nerve Topography in Multiple Sclerosis Diagnosis: The Utility of Visual Evoked Potentials. Neurology 2021; 96: e482-e490
- 6 Chiappa K. Evoked potentials in clinical medicine. In: Evoked potentials in clinical medicine 3rd edition. Philadelphia, PA: Lippincott-Raven; 1997
- 7 Beer S, Rösler KM, Hess CW. Diagnostic value of paraclinical tests in multiple sclerosis: relative sensitivities and specificities for reclassification according to the Poser committee criteria. J Neurol Neurosurg Psychiatry 1995; 59: 152-159
- 8 Leocani L, Rovaris M, Boneschi FM. et al. Multimodal evoked potentials to assess the evolution of multiple sclerosis: a longitudinal study. J Neurol Neurosurg Psychiatry 2006; 77: 1030-1035
- 9 Pelayo R, Montalban X, Minoves T. et al. Do multimodal evoked potentials add information to MRI in clinically isolated syndromes?. Mult Scler 2010; 16: 55-61
- 10 London F, El Sankari S, van Pesch V. Early disturbances in multimodal evoked potentials as a prognostic factor for long-term disability in relapsing-remitting multiple sclerosis patients. Clin Neurophysiol 2017; 128: 561-569
- 11 Hardmeier M, Leocani L, Fuhr P. A new role for evoked potentials in MS? Repurposing evoked potentials as biomarkers for clinical trials in MS. Mult Scler 2017; 23: 1309-1319
- 12 Fuhr P, Borggrefe-Chappuis A, Schindler C. et al. Visual and motor evoked potentials in the course of multiple sclerosis. Brain 2001; 124: 2162-2168
- 13 Schlaeger R, D’Souza M, Schindler C. et al. Electrophysiological markers and predictors of the disease course in primary progressive multiple sclerosis. Mult Scler 2014; 20: 51-56
- 14 Schlaeger R, Hardmeier M, D’Souza M. et al. Monitoring multiple sclerosis by multimodal evoked potentials: Numerically versus ordinally scaled scoring systems. Clin Neurophysiol 2016; 127: 1864-1871
- 15 Hardmeier M, Schindler C, Kuhle J. et al. Validation of Quantitative Scores Derived From Motor Evoked Potentials in the Assessment of Primary Progressive Multiple Sclerosis: A Longitudinal Study. Front Neurol 2020; 11
- 16 Hardmeier M, Schlaeger R, Lascano AM. et al. Prognostic biomarkers in primary progressive multiple sclerosis: Validating and scrutinizing multimodal evoked potentials. Clin Neurophysiol 2022; 137: 152-158
- 17 Hardmeier M, Jacques F, Albrecht P. et al. Multicentre assessment of motor and sensory evoked potentials in multiple sclerosis: reliability and implications for clinical trials. Mult Scler J – Exp Transl Clin 2019; 5: 205521731984479
- 18 Hardmeier M, Fuhr P. Multimodal Evoked Potentials as Candidate Prognostic and Response Biomarkers in Clinical Trials of Multiple Sclerosis. J Clin Neurophysiol 2021; 38: 171-180
- 19 Cadavid D, Balcer L, Galetta S. et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol 2017; 16: 189-199
- 20 Green AJ, Gelfand JM, Cree BA. et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet (London, England) 2017; 390: 2481-2489
- 21 Heidari M, Radcliff AB, McLellan GJ. et al. Evoked potentials as a biomarker of remyelination. Proc Natl Acad Sci U S A 2019; 116: 27074-27083
- 22 Farley BJ, Morozova E, Dion J. et al. Evoked potentials as a translatable biomarker to track functional remyelination. Mol Cell Neurosci 2019; 99
- 23 Green AJ, McQuaid S, Hauser SL. et al. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain 2010; 133: 1591-1601
- 24 Petzold A, de Boer JF, Schippling S. et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9: 921-932
- 25 Talman LS, Bisker ER, Sackel DJ. et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67: 749-760
- 26 Albrecht P, Ringelstein M, Müller AK. et al. Degeneration of retinal layers in multiple sclerosis subtypes quantified by optical coherence tomography. Mult Scler J 2012; 18
- 27 Seigo Ma, Sotirchos ES, Newsome S. et al. In vivo assessment of retinal neuronal layers in multiple sclerosis with manual and automated optical coherence tomography segmentation techniques. J Neurol 2012; 259: 2119-2130
- 28 Petzold A, Balcer LJ, Calabresi PA. et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2017; 16
- 29 Syc SB, Saidha S, Newsome SD. et al. Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis 2012;
- 30 Lagrèze WA, Küchlin S, Ihorst G. et al. Safety and efficacy of erythropoietin for the treatment of patients with optic neuritis (TONE): a randomised, double-blind, multicentre, placebo-controlled study. Lancet Neurol 2021; 20: 991-1000
- 31 Raftopoulos R, Hickman SJ, Toosy A. et al. Phenytoin for neuroprotection in patients with acute optic neuritis : a randomised , placebo-controlled , phase 2 trial. Lancet Neurol 15: 259-269
- 32 Esfahani MR, Harandi ZA, Movasat M. et al. Memantine for axonal loss of optic neuritis. Graefes Arch Clin Exp Ophthalmol 2012; 250: 863-869
- 33 Motamedi D, Mayeli M, Shafie M. et al. Memantine administration in patients with optic neuritis: a double blind randomized clinical trial. Graefes Arch Clin Exp Ophthalmol 2022;
- 34 Oertel FC, Zimmermann H, Paul F. et al. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 2017; 9: 21-33
- 35 EH M-L, S A, JA W, et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study. Lancet Neurol 2016; 15: 574-584
- 36 Lin TY, Vitkova V, Asseyer S. et al. Increased Serum Neurofilament Light and Thin Ganglion Cell-Inner Plexiform Layer Are Additive Risk Factors for Disease Activity in Early Multiple Sclerosis. Neurol Neuroimmunol neuroinflammation 2021; 8
- 37 Saidha S, Sotirchos ES, Ibrahim Ma. et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11: 963-972
- 38 Sotirchos ES, Saidha S, Byraiah G. et al. In vivo identification of morphologic retinal abnormalities in neuromyelitis optica. Neurology 2013; 80: 1406-1414
- 39 Gelfand JM, Nolan R, Schwartz DM. et al. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135: 1786-1793
- 40 Knier B, Leppenetier G, Wetzlmair C. et al. Association of Retinal Architecture, Intrathecal Immunity, and Clinical Course in Multiple Sclerosis. JAMA Neurol 2017; 74: 847-856
- 41 Sotirchos ES, Gonzalez Caldito N, Filippatou A. et al. Progressive Multiple Sclerosis Is Associated with Faster and Specific Retinal Layer Atrophy. Ann Neurol 2020; 87: 885-896
- 42 A A, A C-H, O A et al. APOSTEL 2.0 Recommendations for Reporting Quantitative Optical Coherence Tomography Studies. Neurology 2021; 97: 68-79
- 43 Watanabe A, Matsushita T, Doi H. et al. Multimodality-evoked potential study of anti-aquaporin-4 antibody-positive and -negative multiple sclerosis patients. J Neurol Sci 2009; 281: 34-40
- 44 Neto SP, Alvarenga RMP, Vasconcelos CCF. et al. Evaluation of pattern-reversal visual evoked potential in patients with neuromyelitis optica. Mult Scler 2013; 19: 173-178
- 45 Wingerchuk DM, Lennon VA, Pittock SJ. et al. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006; 66: 1485-1489
- 46 Ringelstein M, Kleiter I, Ayzenberg I. et al. Visual evoked potentials in neuromyelitis optica and its spectrum disorders. Mult Scler J 2014; 20
- 47 Wingerchuk DM, Banwell B, Bennett JL. et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 2015; 85: 177-189
- 48 Ringelstein M, Harmel J, Zimmermann H. et al. Longitudinal optic neuritis-unrelated visual evoked potential changes in NMO spectrum disorders. Neurology 2020; 94: e407-e418
- 49 Bouyon M, Collongues N, Zéphir H. et al. Longitudinal follow-up of vision in a neuromyelitis optica cohort. Mult Scler 2013; 19: 1320-1322
- 50 Jarius S, Ruprecht K, Wildemann B. et al. Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J Neuroinflammation 2012; 9: 14
- 51 Tsao WC, Lyu RK, Ro LS. et al. Clinical correlations of motor and somatosensory evoked potentials in neuromyelitis optica. PLoS One 2014; 9
- 52 Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 2014; 13: 259
- 53 Takanashi Y, Misu T, Oda K. et al. Audiological evidence of therapeutic effect of steroid treatment in neuromyelitis optica with hearing loss. J Clin Neurosci 2014; 21: 2249-2251
- 54 Shaw B, Raghavan RS, Warner G. et al. „Cochlear-type“ hearing loss as part of aquaporin-4 neuromyelitis optica spectrum disorder. BMJ Case Rep 2021; 14
- 55 Krämer J, Brück W, Zipp F. et al. Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182
- 56 Groppa S, Bergmann TO, Siems C. et al. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neuroscience 2010; 166: 1219-1225
- 57 Mori F, Kusayanagi H, Nicoletti CG. et al. Cortical plasticity predicts recovery from relapse in multiple sclerosis. Mult Scler J 2014; 20: 451-457
- 58 Groppa S, Gonzalez-Escamilla G, Eshaghi A. et al. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help?. Brain Commun 2021; 3
- 59 Penner IK. Evaluation of cognition and fatigue in multiple sclerosis: daily practice and future directions. Acta Neurol Scand 2016; 134: 19-23
- 60 Kobelt G, Thompson A, Berg J. et al. New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler 2017; 23: 1123-1136
- 61 Kalb R, Beier M, Benedict RHB. et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler 2018; 24: 1665-1680
- 62 Pitteri M, Romualdi C, Magliozzi R. et al. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Mult Scler 2017; 23: 848-854
- 63 Calabrese M, Agosta F, Rinaldi F. et al. Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 2009; 66: 1144-1150
- 64 Audoin B, Ibarrola D, Ranjeva JP. et al. Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Hum Brain Mapp 2003; 20: 51-58
- 65 Penner IK, Rausch M, Kappos L. et al. Analysis of impairment related functional architecture in MS patients during performance of different attention tasks. J Neurol 2003; 250: 461-472
- 66 Hawellek DJ, Hipp JF, Lewis CM. et al. Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc Natl Acad Sci U S A 2011; 108: 19066-19071
- 67 Sumowski JF, Rocca MA, Leavitt VM. et al. Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS. Neurology 2014; 82: 1776-1783
- 68 Sumowski JF, Chiaravalloti N, Wylie G. et al. Cognitive reserve moderates the negative effect of brain atrophy on cognitive efficiency in multiple sclerosis. J Int Neuropsychol Soc 2009; 15: 606-612
- 69 Sumowski JF, Wylie GR, Deluca J. et al. Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain 2010; 133: 362-374
- 70 Fuchs TA, Benedict RHB, Bartnik A. et al. Preserved network functional connectivity underlies cognitive reserve in multiple sclerosis. Hum Brain Mapp 2019; 40: 5231-5241
- 71 Schwartz CE, Quaranto BR, Healy BC. et al. Cognitive reserve and symptom experience in multiple sclerosis: a buffer to disability progression over time?. Arch Phys Med Rehabil 2013; 94
- 72 Klistorner A, Garrick R, Barnett MH. et al. Axonal loss in non-optic neuritis eyes of patients with multiple sclerosis linked to delayed visual evoked potential. Neurology 2013; 80: 242-245
- 73 Balk LJ, Steenwijk MD, Tewarie P. et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry 2015; 86: 419-424