Subscribe to RSS
DOI: 10.1055/a-2030-6874
Lewis Acid Catalyzed [4+1] Cycloaddition of o-Quinone Methides and Isocyanides: Mild and Efficient Synthesis of 3-Aryl-2-aminobenzofurans
We thank the National Natural Science Foundation of China (No. 22101168) and Shanghai Pujiang Talent Scholar (No. 21PJ1403700) for financial support.
Dedicated to the 100th anniversary of Shanghai University
Abstract
We herein report a mild and efficient synthesis of 3-aryl-2-aminobenzofurans by Lewis acid catalyzed [4+1] cycloaddition of in situ generated o-quinone methides and isocyanides. Compared with the well-known methods, the current reactions are carried out under mild conditions and feature wide substrate scope in high yields at ambient temperature at catalyst loadings as low as 1 mol%. DFT calculations show dehydration as the rate-determining step, a stepwise [4+1] cycloaddition process, and the Lewis acid as dual roles in accelerating dehydration and cycloaddition reaction.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2030-6874.
- Supporting Information
Publication History
Received: 29 November 2022
Accepted after revision: 08 February 2023
Accepted Manuscript online:
08 February 2023
Article published online:
02 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Ziegert RE, Toraeng J, Knepper K, Bräse S. J. Comb. Chem. 2005; 7: 147
- 1b Hou X.-L, Yang Z, Yeung K.-S, Wong HN. C. Prog. Heterocycl. Chem. 2005; 17: 142
- 2a Eissenstat M. WO2008115894 2008
- 2b Dai JR, Hallock JH. II, Boyd M. J. Nat. Prod. 1998; 67: 351
- 2c Gangjee A, Devraj R, McGuire JJ, Kisliuk RL. J. Med. Chem. 1995; 38: 3798
- 2d Huang H.-C, Chamberlain TS, Selbert K, Koboldt CM, Isakson PC, Reitz DB. Bioorg. Med. Chem. Lett. 1995; 5: 2377
- 2e Shimazu S, Takahata K, Katsuki H, Tsunekawa H, Tanigawa A, Yoneda F, Knoll J, Akaike A. Eur. J. Pharmacol. 2001; 421: 181
- 2f Singh BM, Vaughan WilliamsE. M. Br. J. Pharmacol. 1970; 139: 255
- 3a Donelly DM. X, Meegan MJ. Furans and Their Benzo Derivatives . In Comprehensive Heterocyclic Chemistry, Vol. 4. Katritzky AR. Pergamon Press; New York: 1984: 657-712
- 3b Cagniant P, Cagniant D. Adv. Heterocycl. Chem. 1975; 18: 337
- 3c Bird CW, Cheeseman GW. H. Synthesis of Five-Membered Rings with One Heteroatom . In Comprehensive Heterocyclic Chemistry, Vol. 4. Katritzky AR. Pergamon Press; New York: 1984: 89-153
- 4a Kraus GA, Gupta V. Tetrahedron Lett. 2009; 50: 7180
- 4b Kraus GA, Kim I. Org. Lett. 2003; 5: 1191
- 4c Kerr DJ, Willis AC, Flynn BL. Org. Lett. 2004; 6: 457
- 5 For reviews, see: De Luca L, Nieddu G, Porcheddu A, Giacomelli G. Curr. Med. Chem. 2009; 16: 1
- 6a Demerseman P, Guillaumel J, Cheutin A, Royer R. Bull. Soc. Chim. Fr. 1970; 2253
- 6b Deprets S, Kirsch G. Eur. J. Org. Chem. 2000; 1353
- 7 Carrër A, Florent J, Auvrouin E, Rousselle P, Bertounesque E. J. Org. Chem. 2011; 76: 2502
- 8 Einhorn JF, Demerseman P, Royer R. Synthesis 1984; 978
- 9a Petasis NA, Goodman A, Zavialov IA. Tetrahedron 1997; 53: 16463
- 9b Chen C, Wilcoxen K, Strack N, McCarthy JR. Tetrahedron Lett. 1999; 40: 827
- 9c Oh CH, Jung HH, Kim KS, Kim N. Angew. Chem. Int. Ed. 2003; 42: 805
- 9d Buszek KR, Brown N. Org. Lett. 2007; 9: 707
- 9e Wang Z, Elokdah H, McFarlane G, Pan S, Antane M. Tetrahedron Lett. 2006; 47: 3365
- 10 For a review on synthetic methods for copper-mediated C(aryl)–N formation, see: Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
- 11 Oppenheimer J, Johnson WL, Tracey MR, Hsung RP, Yao P.-Y, Liu R, Zhao K. Org. Lett. 2007; 9: 2361
- 12 Dooleweerdt K, Ruhland T, Skrydstrup T. Org. Lett. 2009; 11: 221
- 13 Kong Y, Jiang K, Cao J, Fu L, Yu L, Lai G, Cui Y, Hu Z, Wang G. Org. Lett. 2013; 15: 422
- 14 El KaïmL, Grimaud L, Oble J. Org. Biomol. Chem. 2006; 4: 3410
- 15 Baghernejad B, Heravi MM, Oskooie HA, Poormohammad N, Khorshidi M. Beheshtiha Y. S. 2011; 15: 245
- 16 Prasad SS, Joshi DR, Lee JH, Kim I. Org. Biomol. Chem. 2020; 18: 8119
- 17a Wilcke D, Herdtweck E, Bach T. Synlett 2011; 1235
- 17b El-Sepelgy O, Haseloff S, Alamsetti SK, Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
- 17c Hsiao C.-C, Liao H.-H, Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
- 17d Zhao W, Wang Z, Chu B, Sun J. Angew. Chem. Int. Ed. 2015; 54: 1910
- 17e Wang Z, Ai F, Wang Z, Zhao W, Zhu G, Lin Z, Sun J. J. Am. Chem. Soc. 2015; 137: 383
- 17f Hsiao C.-C, Raja S, Liao H.-H, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
- 17g Saha S, Alamsetti SK, Schneider C. Chem. Commun. 2015; 51: 1461
- 17h Saha S, Schneider C. Chem. Eur. J. 2015; 21: 2348
- 17i Saha S, Schneider C. Org. Lett. 2015; 17: 648
- 17j Tsui GC, Liu L, List B. Angew. Chem. Int. Ed. 2015; 54: 7703
- 17k Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 18a Alden-Danforth E, Scerba MT, Lectka T. Org. Lett. 2008; 10: 4951
- 18b Lv H, You L, Ye S. Adv. Synth. Catal. 2009; 351: 2822
- 18c Zhao JJ, Sun SB, He SH, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
- 18d Hsiao CC, Raja S, Liao HH, Atodiresei I, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
- 18e Xie YW, List B. Angew. Chem. Int. Ed. 2017; 56: 4936
- 18f Gebauer K, Reuß F, Spanka M, Schneider C. Org. Lett. 2017; 19: 4588
- 18g Wang ZB, Sun JW. Org. Lett. 2017; 19: 2334
- 18h Spanka M, Schneider C. Org. Lett. 2018; 20: 4769
- 18i Zhang H, Liu GF, Guan XK, Gao JG, Qin XS, Jiang GF, Sun DY, Zhang GL, Zhang SQ. Eur. J. Org. Chem. 2019; 7264
- 18j Feng SB, Yang BM, Chen T, Wang R, Deng YH, Shao ZH. J. Org. Chem. 2020; 85: 5231
- 18k Göricke F, Haseloff S, Laue M, Schneider M, Brumme T, Schneider C. J. Org. Chem. 2020; 85: 11699
- 18l Xiang M, Li CY, Song XJ, Zou Y, Huang ZC, Li X, Tian F, Wang LX. Chem. Commun. 2020; 56: 14825
- 19a Lv H, Jia WQ, Sun LH, Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
- 19b Sun M, Ma C, Zhou SJ, Lou SF, Xiao J, Jiao YC, Shi F. Angew. Chem. Int. Ed. 2019; 58: 8703
- 19c Suneja A, Loui HJ, Schneider C. Angew. Chem. Int. Ed. 2020; 59: 5536
- 20a Chen M.-W, Cao L.-L, Ye Z.-S, Jiang G.-F, Zhou Y.-G. Chem. Commun. 2013; 49: 1660
- 20b Lei X, Jiang C.-H, Wen X, Xu Q.-L, Sun H. RSC Adv. 2015; 5: 14953
- 20c Rodriguez KX, Vail JD, Ashfeld BL. Org. Lett. 2016; 18: 4514
- 20d Lian X.-L, Adili A, Liu B, Tao Z.-L, Han Z.-Y. Org. Biomol. Chem. 2017; 15: 3670
- 20e Suneja A, Schneider C. Org. Lett. 2018; 20: 7576
- 20f Pandit RP, Kim ST, Ryu DH. Angew. Chem. Int. Ed. 2019; 58: 13427
- 20g Zhou F, Cheng Y, Liu X.-P, Chen J.-R, Xiao W.-J. Chem. Commun. 2019; 55: 3117
- 21 CCDC 2225353 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
- 22 N-(tert-Butyl)-3-(4-methoxyphenyl)benzofuran-2-amine; Typical Procedure To a flame-dried Schlenk tube were added 1a (46 mg, 0.2 mmol), Sc(OTf)3 (5.0 mg, 0.01 mmol), 3 Å MS (100 mg), anhydrous toluene (2.0 mL), and 2a (33 mg, 0.4 mmol). The resulting reaction mixture was stirred at RT for 3 h. Then the solution was concentrated under vacuum, and the residue was purified by chromatography (silica gel, EtOAc–PE = 1:100) to give a light-yellow oil; yield 56 mg (95%). 1H NMR (500 MHz, CDCl3): δ = 7.47‒7.40 (m, 3 H), 7.35 (dt, J = 8.0, 0.9 Hz, 1 H), 7.16 (td, J = 7.5, 1.1 Hz, 1 H), 7.12‒7.06 (m, 1 H), 7.05–7.00 (m, 2 H), 4.20 (s, 1 H), 3.87 (s, 3 H), 1.40 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 158.1, 155.0, 150.6, 130.0, 129.4, 125.9, 122.8, 120.8, 117.1, 114.8, 110.1, 97.6, 55.5, 53.6, 30.7. HRMS (ESI): m/z [C19H21NO2 + H]+ calcd: 296.1645; found: 296.1643.§
- 23a All of the DFT calculations were performed with the Gaussian 09 program package at the B3LYP-D3(BJ) level of theory with the 6-31G
- 23b basis set (keyword 5D) using the SMD solvation model with toluene solvent. Single-point solvent calculations were performed at the M06-2X-D3 level of theory with 6-311+G(d,p) basis set at the optimized geometries. All of the energies discussed in the paper are in toluene solution (ΔG tol). Computational details and references are given in the Supporting Information.
For reviews, see:
For selected recent synthesis of benzofuran-based natural products, see:
For a brief overview of the reactions of benzofuran-2-boronic acid, see:
For catalytic asymmetric reactions of o-quinone methides with carbon-based nucleophiles by chiral phosphoric acid catalysis, see: