Synlett 2023; 34(13): 1539-1548
DOI: 10.1055/a-2020-8717
synpacts

2,2-Disubstituted Indoxyls via Oxidative Dearomatization: Generalization to 2-Alkylindoles and Application to Alkaloid Synthesis

Fan Xu
,
This work was financially supported by UT Southwestern through the W. W. Caruth Jr. Scholarship and the Welch Foundation (I-2045).


Abstract

2,2-Disubstituted indoxyls are commonly found within natural products and bioactive molecules. Among the numerous methods to access such motifs, the dearomative transformation of indoles represents an attractive approach. Despite much development, a potential gap exists in the oxidative union of readily accessible 2-substituted indoles with nucleophilic partners, where a general transformation accommodating 2-alkyl substitution and a broad range of nucleophiles is lacking. Herein, we describe the development of a user-friendly solution to this challenge and highlight its utility in the synthesis of complex alkaloids.

1 Introduction

2 Synthesis of 2,2-Disubstituted Indoxyls via Dearomatization of Indoles: Background

3 Oxidative Dearomatization of 2-Alkylindoles to 2,2-Disubstituted Indoxyls: Development

4 Selected Scope and Preliminary Investigations toward an Asymmetric Coupling

5 Application to the Total Synthesis of Complex Alkaloids

6 Conclusions



Publication History

Received: 16 January 2023

Accepted after revision: 26 January 2023

Accepted Manuscript online:
26 January 2023

Article published online:
28 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes


    • For reviews, see:
    • 1a Ryabova SY, Granik VG. Pharm. Chem. J. 1995; 29: 809
    • 1b Dalpozzo R, Bartoli G, Bencivenni G. Chem. Soc. Rev. 2012; 41: 7247
    • 1c Dalpozzo R. Adv. Synth. Catal. 2017; 359: 1772
    • 1d Dhote P, Patel P, Vanka K, Ramana CV. Org. Biomol. Chem. 2021; 19: 7970

      For representative examples, see:
    • 2a Higuchi K, Masuda K, Koseki T, Hatori M, Sakamoto M, Kawasaki T. Heterocycles 2007; 73: 641
    • 2b Schneekloth JS, Kim JJ, Sorensen EJ. Tetrahedron 2009; 65: 3096
    • 2c Wetzel A, Gagosz F. Angew. Chem. Int. Ed. 2011; 50: 7354
    • 2d Goriya Y, Ramana CV. Chem. Commun. 2013; 49: 6376
    • 2e Chen T.-G, Fang P, Hou X.-L, Dai L.-X. Synthesis 2015; 47: 134
    • 2f Suneel Kumar CV, Ramana CV. Org. Lett. 2015; 17: 2870
    • 2g Liu R.-R, Ye S.-C, Lu C.-J, Zhuang G.-L, Gao J.-R, Jia Y.-X. Angew. Chem. Int. Ed. 2015; 54: 11205
    • 2h Xia Z, Hu J, Gao Y.-Q, Yao Q, Xie W. Chem. Commun. 2017; 53: 7485
    • 2i Torres-Ochoa RO, Buyck T, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2018; 57: 5679
    • 2j Aksenov AV, Aksenov DA, Aksenov NA, Aleksandrova EV, Rubin M. J. Org. Chem. 2019; 84: 12420

      For reviews on indole dearomatization, see:
    • 3a Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; 71: 3549
    • 3b Zheng C, You S.-L. Chem 2016; 1: 830
    • 3c Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
  • 4 For our initial communication of these results, see: Xu F, Smith MW. Chem. Sci. 2021; 12: 13756 
    • 5a Witkop B, Patrick JB. J. Am. Chem. Soc. 1951; 73: 2188
    • 5b Zhang X, Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 5c Liu Y, McWhorter WW. J. Org. Chem. 2003; 68: 2618
    • 5d Lerch S, Unkel L.-N, Brasholz M. Angew. Chem. Int. Ed. 2014; 53: 6558
    • 5e Ding W, Zhou Q.-Q, Xuan J, Li T.-R, Lu L.-Q, Xiao W.-J. Tetrahedron Lett. 2014; 55: 4648
    • 5f Schendera E, Lerch S, von Drathen T, Unkel L.-N, Brasholz M. Eur. J. Org. Chem. 2017; 3134
    • 5g Lauwick H, Sun Y, Akdas-Kilig H, Dérien S, Achard M. Chem. Eur. J. 2018; 24: 7964
    • 6a Buller MJ, Cook TG, Kobayashi Y. Heterocycles 2007; 72: 163
    • 6b Higuchi K, Sato Y, Kojima S, Tsuchimochi M, Sugiura K, Hatori M, Kawasaki T. Tetrahedron 2010; 66: 1236
    • 6c Li L, Han M, Xiao M, Xie Z. Synlett 2011; 1727
    • 6d Guchhait SK, Chaudhary V, Rana VA, Priyadarshani G, Kandekar S, Kashyap M. Org. Lett. 2016; 18: 1534
    • 6e Liu X, Yan X, Tang Y, Jiang C.-S, Yu J.-H, Wang K, Zhang H. Chem. Commun. 2019; 55: 6535
    • 6f Singh A, Vanaparthi S, Choudhary S, Krishnan R, Kumar I. RSC Adv. 2019; 9: 24050
    • 6g Jiang X, Zhu B, Lin K, Wang G, Su W.-K, Yu C. Org. Biomol. Chem. 2019; 17: 2199
    • 6h Liu J, Huang J, Jia K, Du T, Zhao C, Zhu R, Liu X. Synthesis 2020; 52: 763
    • 6i Yan X, Tang Y.-D, Jiang C.-S, Liu X, Zhang H. Molecules 2020; 25: 419
    • 6j Chen S, Li M, Gu Y. Chem. Commun. 2021; 57: 10431
    • 6k Yadav K, Jankiram Dolas A, Iype E, Rangan K, Ohshita J, Kumar D, Kumar I. J. Org. Chem. 2021; 86: 17213
    • 6l Zhao Y.-L, An J.-X, Yang F.-F, Guan X, Fu X.-Z, Li Z.-Q, Wang D.-P, Zhou M, Yang Y.-Y, He B. Adv. Synth. Catal. 2022; 364: 1277
    • 6m Hu W.-B, Qiu Y.-Q, Wei W.-Y, Li Q, Xu Y.-J. J. Org. Chem. 2022; 87: 6179
    • 6n Kacharu Nagare Y, Ahmad Shah I, Yadav J, Prakash Pawar A, Rangan K, Choudhary R, Iype E, Kumar I. J. Org. Chem. 2022; 87: 15771

      For representative examples of oxidative indole dimerization/trimerization, see:
    • 7a Kong Y.-B, Zhu J.-Y, Chen Z.-W, Liu L.-X. Can. J. Chem. 2014; 92: 269
    • 7b Lin F, Chen Y, Wang B, Qin W, Liu L. RSC Adv. 2015; 5: 37018
    • 7c Zhang C, Li S, Bureš F, Lee R, Ye XZ, Jiang Z. ACS Catal. 2016; 6: 6853
    • 7d Zhou X.-Y, Chen X, Wang L.-G, Yang D, Li J.-H. Synlett 2018; 29: 835
    • 7e Deka B, Deb ML, Thakuria R, Baruah PK. Catal. Commun. 2018; 106: 68
    • 7f Kothandapani J, Reddy SM. K, Thamotharan S, Kumar SM, Byrappa K, Ganesan SS. Eur. J. Org. Chem. 2018; 2762
    • 7g Dong Y, Qian J.-H, Chen X.-L, Jiang H, Li X, Zhou Q, Mei T, Shi Z.-C, Li Z.-H, He B. RSC Adv. 2022; 12: 21022
    • 7h Cremer C, Patureau FW. JACS Au 2022; 2: 1318

      For asymmetric methods, see:
    • 8a Rueping M, Raja S, Núñez A. Adv. Synth. Catal. 2011; 353: 563
    • 8b Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, García Ruano JL, Alemán J. Chem. Commun. 2012; 48: 9759
    • 8c Rueping M, Rasappan R, Raja S. Helv. Chim. Acta 2012; 95: 2296
    • 8d Li J.-S, Liu Y.-J, Zhang G.-W, Ma J.-A. Org. Lett. 2017; 19: 6364
    • 8e Ding X, Dong C, Guan Z, He Y. Angew. Chem. Int. Ed. 2019; 58: 118
    • 8f Dong C.-L, Ding X, Huang L.-Q, He Y.-H, Guan Z. Org. Lett. 2020; 22: 1076

    • For examples involving 2-alkyl substitution, see:
    • 8g Yin Q, You S.-L. Chem. Sci. 2011; 2: 1344
    • 8h Liu X, Yan X, Yu J.-H, Tang Y.-D, Wang K, Zhang H. Org. Lett. 2019; 21: 5626
    • 9a Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 9b Mayr H, Kempf B, Ofial AR. Acc. Chem. Res. 2003; 36: 66
    • 9c Lakhdar S, Westermaier M, Terrier F, Goumont R, Boubaker T, Ofial AR. H, Mayr H. J. Org. Chem. 2006; 71: 9088
    • 10a Zhang Z, Ray S, Imlay L, Callaghan LT, Niederstrasser H, Mallipeddi PL, Posner BA, Wetzel DM, Phillips MA, Smith MW. Chem. Sci. 2021; 12: 10388
    • 10b Aquilina JM, Smith MW. J. Am. Chem. Soc. 2022; 144: 11088

      For N-acyl or N-alkyl examples, see ref. 7c and:
    • 11a Chien C.-S, Suzuki T, Kawasaki T, Sakamoto M. Chem. Pharm. Bull. 1984; 32: 3945
    • 11b Chien C.-S, Takanami T, Kawasaki T, Sakamoto M. Chem. Pharm. Bull. 1985; 33: 1843
    • 11c Altinis Kiraz CI, Emge TJ, Jimenez LS. J. Org. Chem. 2004; 69: 2200
    • 11d Zhou X.-Y, Chen X, Wang L.-G, Yang D, Li Z. Synthesis 2017; 49: 3662
  • 12 Vedejs E, Larsen S. Org. Synth. 1986; 64: 127
  • 13 Karadeolian A, Kerr MA. J. Org. Chem. 2010; 75: 6830
  • 14 Kieffer ME, Repka LM, Reisman SE. J. Am. Chem. Soc. 2012; 134: 5131
  • 15 A photocatalyzed aerobic oxidation based on that reported by Zhu and co-workers was successful but did not prove scalable above 0.2 mmol: Zhang M, Duan Y, Li W, Cheng Y, Zhu C. Chem. Commun. 2016; 52: 4761 ; see also ref. 7c
  • 16 Although the corresponding 2-methoxyindoxyl could be obtained by substituting methanol for ethanol in the reaction, in our hands this compound was slightly more sensitive; the 2-isopropoxy variant, while stable, was generated less efficiently and provided reduced yields in the subsequent couplings.
  • 17 The alkene geometry of (Z)-31 was confirmed by 1D NOE experiments.
  • 18 Colomer I, Chamberlain AM, Haughey M, Donohoe TJ. Nat. Rev. Chem. 2017; 1: 0088
  • 19 Aota Y, Doko Y, Kano T, Maruoka K. Eur. J. Org. Chem. 2020; 190
  • 20 Rueping M, Ieawsuwan W, Antonchick A, Nachtsheim B. Angew. Chem. Int. Ed. 2007; 46: 2097
  • 21 Isolation: Tan C.-J, Di Y.-T, Wang Y.-H, Zhang Y, Si Y.-K, Zhang Q, Gao S, Hu X.-J, Fang X, Li S.-F, Hao X.-J. Org. Lett. 2010; 12: 2370
    • 22a Qi X, Bao H, Tambar UK. J. Am. Chem. Soc. 2011; 133: 10050
    • 22b Han SM, Movassaghi M. J. Am. Chem. Soc. 2011; 133: 10768
    • 22c Reddy BN, Ramana CV. Chem. Commun. 2013; 49: 9767
    • 22d Han S, Morrison KC, Hergenrother PJ, Movassaghi M. J. Org. Chem. 2014; 79: 473
    • 23a Wang C, Sperry J. Org. Lett. 2011; 13: 6444
    • 23b Gimeno A, Rodríguez-Gimeno A, Cuenca AB, Ramírez de Arellano C, Medio-Simón M, Asensio G. Chem. Commun. 2015; 51: 12384
  • 24 Caramenti P, Nandi RK, Waser J. Chem. Eur. J. 2018; 24: 10049

    • Isolation:
    • 25a Birch AJ, Wright JJ. J. Chem. Soc. D 1969; 644

    • Bioactivity:
    • 25b Paterson RR. M, Simmonds MJ. S, Kemmelmeier C, Blaney WM. Mycol. Res. 1990; 94: 538

      For reviews, see:
    • 26a Miller KA, Williams RM. Chem. Soc. Rev. 2009; 38: 3160
    • 26b Finefield JM, Frisvad JC, Sherman DH, Williams RM. J. Nat. Prod. 2012; 75: 812
    • 26c Klas KR. Kato H, Frisvad JC, Yu F, Newmister SA, Fraley AE, Sherman DH, Tsukamoto S, Williams RM. Nat. Prod. Rep. 2018; 35: 532

    • For representative diaza[2.2.2]octane alkaloid syntheses, see:
    • 26d Williams RM, Cox RJ. Acc. Chem. Res. 2003; 36: 127
    • 26e Trost BM, Cramer N, Bernsmann H. J. Am. Chem. Soc. 2007; 129: 3086
    • 26f Herzon SB, Myers AG. J. Am. Chem. Soc. 2005; 127: 5342
    • 26g Baran PS, Hafensteiner BD, Ambhaikar NB, Guerrero CA, Gallagher JD. J. Am. Chem. Soc. 2006; 128: 8678
    • 26h Frebault F, Simpkins NS, Fenwick A. J. Am. Chem. Soc. 2009; 131: 4214
    • 26i Mercado-Marin EV, Sarpong R. Chem. Sci. 2015; 6: 5048
    • 27a Godfrey RC, Green NJ, Nichol GS, Lawrence AL. Nat. Chem. 2020; 12: 615
    • 27b Godfrey RC, Jones HE, Green NJ, Lawrence AL. Chem. Sci. 2022; 13: 1313
    • 27c Mansour A, Gagosz F. Org. Lett. 2022; 24: 7200
  • 28 Li Q, Seiple IB. J. Am. Chem. Soc. 2017; 139: 13304
  • 29 Huy P, Neudörfl J.-M, Schmalz H.-G. Org. Lett. 2011; 13: 216
  • 30 For instability of the dihydro congener, see: Finefield JM, Frisvad JC, Sherman DH. R. M, Williams RM. J. Nat. Prod. 2012; 75: 812