Synthesis 2023; 55(12): 1893-1903
DOI: 10.1055/a-2013-5801
paper

Metal-Free Cascade Synthesis of 1,2,4-Thiadiazoles from β-Ketothioamides and Alkyl/Aryl Cyanides under TBN Enabling Conditions at Room Temperature

Saurabh Singh
,
Gaurav Shukla
,
Subhasish Ray
,
We gratefully acknowledge the financial support from the Science and Engineering Research Board, New Delhi (CRG/2019/000058 and a JC Bose National Fellowship, JCB/2020/000023). The authors SS and SR are thankful to the University Grants Commission (UGC), New Delhi­, for fellowships. We also acknowledge the support of the Department of Science and Technology, Ministry of Science and Technology, India (DST-FIST program) for basic and high-end analytical facilities to the department.


Abstract

A metal-free radical cascade cyclization of β-ketothioamides and alkyl/aryl cyanides has been developed for the synthesis of 1,2,4-thiadiazoles bearing a stable nitroso group at an exocyclic double bond in a one-pot system. The reaction proceeds via the in situ generated ketoxime intermediate of β-ketothioamide, which further assists the formation of 1,2,4-thiadiazole through reaction with nitrile under TBN (tert-butyl nitrite) mediation. The basic utility of this reaction is the formation of three new bonds (two C–N and one S–N) in one stretch under mild conditions. Moreover, this protocol features excellent functional group tolerance, operational simplicity, and easy scalability. The radical process is supported by the BHT adduct of the α-ketoxime intermediate. Noteworthy is that the products possess Z stereochemistry with regard to the exocyclic C=C double bond at the 5-position.

Supporting Information



Publikationsverlauf

Eingereicht: 08. Dezember 2022

Angenommen nach Revision: 16. Januar 2023

Accepted Manuscript online:
16. Januar 2023

Artikel online veröffentlicht:
16. Februar 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Samanta S, Ali SA, Bera A, Giri S, Samanta K. New J. Chem. 2022; 46: 7780
    • 1b Vitaku E, Smith DT, Njardarson JT. Angew. Chem. Int. Ed. 2016; 55: 2243
    • 1c Giel MC, Smedley CJ, Mackie ER, Guo T, Dong J, Soares da Costa TP, Moses JE. Angew. Chem. Int. Ed. 2019; 59: 1181
    • 1d Mukherjee S, Pramanik A. ACS Sustainable Chem. Eng. 2019; 8: 403
    • 1e Zhang B, Guo T, Li Z, Kühn FE, Lei M, Zhao ZK, Xiao J, Zhang J, Xu D, Zhang T, Li C. Nat. Commun. 2022; 13: 3365
    • 1f Li J, Zhang Q, Yin J, Yu C, Cheng K, Wei Y, Hao E, Jiao L. Org. Lett. 2016; 18: 5696
    • 2a Nicolaou KC, Edmonds DJ, Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 2b Nicolaou KC, Montagnon T, Snyder SA. Chem. Commun. 2003; 5: 551
    • 2c Yoder RA, Johnston JN. Chem. Rev. 2005; 105: 4730
    • 2d Ciulla MG, Zimmermann S, Kumar K. Org. Biomol. Chem. 2019; 17: 413
    • 3a Heravi MM, Zadsirjan V. RSC Adv. 2020; 10: 44247
    • 3b Chen Y.-L, Dai Y.-H, Wang A.-D, Zhou Z.-Y, Lei M, Liu J, Lin B, Xia M.-Y, Wang D. Molecules 2020; 25: 4511
    • 3c Davison EK, Sperry J. J. Nat. Prod. 2017; 80: 3060
    • 3d Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 4a Castro A, Castaño T, Encinas A, Porcal W, Gil C. Bioorg. Med. Chem. 2006; 14: 1644
    • 4b Frija LM, Pombeiro AJ, Kopylovich MN. Eur. J. Org. Chem. 2017; 19: 2670
  • 5 Davison EK, Sperry J. Org. Chem. Front. 2016; 3: 38
    • 6a Yang Z, Zhang J, Hu L, Li L, Liu K, Yang T, Zhou C. J. Org. Chem. 2020; 85: 3358
    • 6b Kim H.-Y, Kwak SH, Lee G.-H, Gong Y.-D. Tetrahedron 2014; 70: 8737
    • 6c Mariappan A, Rajaguru K, Merukan Chola N, Muthusubramanian S, Bhuvanesh N. J. Org. Chem. 2016; 81: 6573
    • 6d Wang Z, Xie H, Xiao F, Guo Y, Huang H, Deng G.-J. Eur. J. Org. Chem. 2017; 1604
    • 7a Kikelj V, Julienne K, Meslin J.-C, Deniaud D. Tetrahedron Lett. 2009; 50: 5802
    • 7b Yajima K, Yamaguchi K, Mizuno N. Chem. Commun. 2014; 50: 6748
    • 7c Wang B, Meng Y, Zhou Y, Ren L, Wu J, Yu W, Chang J. J. Org. Chem. 2017; 82: 5898
    • 8a García-Santos M, del González-Mancebo S, Hernández-Benito J, Calle E, Casado J. J. Am. Chem. Soc. 2002; 124: 2177
    • 8b Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630
    • 8c Huang J, Chen Z, Yuan J, Peng Y. Asian J. Org. Chem. 2016; 5: 951
    • 8d Kuhnle G, Story G, Reda T, Mani A, Moore K, Lunn J, Bingham S. Free Radical Biol. Med. 2007; 43: 1040
    • 9a Chen XY, Zhang X, Wan J.-P. Org. Biomol. Chem. 2022; 20: 2356
    • 9b Annes SB, Saritha R, Chandru K, Mandali PK, Ramesh S. J. Org. Chem. 2021; 86: 16473
    • 9c Li J, Wen J.-X, Lu X.-C, Hou G.-Q, Gao X, Li Y, Liu L. ACS Omega 2021; 6: 26699
    • 9d Wang Q, Mgimpatsang KC, Konstantinidou M, Shishkina SV, Dömling A. Org. Lett. 2019; 21: 7320
    • 9e Cui X, Ma J, Zeng T, Xu J, Li Y, Wang X. RSC Adv. 2021; 11: 24247
    • 9f Jiang P, Chen S, Huang H, Hu K, Xia Y, Deng G.-J. Green Synth. Catal. 2021; 2: 78
    • 10a Schlitzer SC, Arunprasath D, Stevens KG, Sharma I. Org. Chem. Front. 2020; 7: 913
    • 10b Liu B.-B, Bai H.-W, Liu H, Wang S.-Y, Ji S.-J. J. Org. Chem. 2018; 83: 10281
    • 10c Chen J, Jiang Y, Yu J.-T, Cheng J. J. Org. Chem. 2015; 81: 271
    • 10d Shukla G, Saha P, Pali P, Raghuvanshi K, Singh MS. J. Org. Chem. 2021; 86: 18004
    • 10e Tumula N, Jatangi N, Palakodety RK, Balasubramanian S, Nakka M. J. Org. Chem. 2017; 82: 5310
    • 11a Li M, Sun K.-N, Wen L.-R. RSC Adv. 2016; 6: 21535
    • 11b Guo W.-S, Wen L.-R, Li M. Org. Biomol. Chem. 2015; 13: 1942
    • 11c Luo X, Ge L.-S, An X.-L, Jin J.-H, Wang Y, Sun P.-P, Deng W.-P. J. Org. Chem. 2015; 80: 4611
    • 11d Lu H, Tan C.-Y, Zhang H.-X, Zhang J.-L, Liu J.-Y, Li H.-Y, Xu P.-F. J. Org. Chem. 2018; 83: 15245
    • 12a Wen L.-R, He T, Lan M.-C, Li M. J. Org. Chem. 2013; 78: 10617
    • 12b Nandi GC, Singh MS. J. Org. Chem. 2016; 81: 5824
    • 12c Verma GK, Shukla G, Nagaraju A, Srivastava A, Singh MS. Tetrahedron 2014; 70: 6980
    • 12d Wen L.-R, Men L.-B, He T, Ji G.-J, Li M. Chem. Eur. J. 2014; 20: 5028
    • 12e Pali P, Yadav D, Sahoo SC, Singh MS. J. Org. Chem. 2022; 87: 12342
    • 13a Ansari MA, Yadav D, Singh MS. Chem. Eur. J. 2020; 26: 8083
    • 13b Ansari MA, Yadav D, Soni S, Srivastava A, Singh MS. J. Org. Chem. 2019; 84: 5404
  • 14 Yadav D, Srivastava A, Ansari MA, Singh MS. J. Org. Chem. 2021; 86: 5908
    • 15a Yedage SL, Bhanage BM. J. Org. Chem. 2017; 82: 5769
    • 15b Sau P, Rakshit A, Alam T, Srivastava HK, Patel BK. Org. Lett. 2019; 21: 4966
    • 15c He K, Li P, Zhang S, Chen Q, Ji H, Yuan Y, Jia X. Chem. Commun. 2018; 54: 13232
    • 15d Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454
    • 15e Sau P, Santra SK, Rakshit A, Patel BK. J. Org. Chem. 2017; 82: 6358
    • 15f Si YF, Lv QY, Yu B. Adv. Synth. Catal. 2021; 363: 4640
    • 15g Krylov IB, Segida OO, Budnikov AS, Terent’ev AO. Adv. Synth. Catal. 2021; 363: 2502
  • 16 Zeng X.-M, Meng C.-Y, Bao J.-X, Xu D.-C, Xie J.-W, Zhu W.-D. J. Org. Chem. 2015; 80: 11521