Subscribe to RSS
DOI: 10.1055/a-2011-7334
SbCl3-Initiated Csp3 –Csp3 Coupling between N-Aryltetrahydroisoquinolines and Nitroalkanes via the Aerobic Oxidation of sp3 C–H Bond
National Natural Science Foundation of China (NNSFC, No. 21562038).
Abstract
An SbCl3-initiated Csp3 –Csp3 coupling between N-aryltetrahydroisoquinolines and nitromethanes was realized through the aerobic oxidation of sp 3 C–H bond, providing a series of nitromethylated tetrahydroisoquinoline derivatives in high yields. The results exhibited that SbCl3, as a cheap and commercially available reagent, is an efficient initiator to promote the direct functionalization of sp3 C–H bond with broad functional group tolerance, which is potentially applied to a wider range of C–H bond activation reactions.
Key words
antimony trichloride - sp3 C–H oxidation - aerobic oxidation - N-aryltetrahydroisoquinoline - Csp3 –Csp3 couplingSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2011-7334.
- Supporting Information
Publication History
Received: 19 December 2022
Accepted after revision: 12 January 2023
Accepted Manuscript online:
12 January 2023
Article published online:
06 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
- 1b Sauermann N, Meyer TH, Qiu Y, Ackermann L. ACS Catal. 2018; 8: 7086
- 1c Wang H, Gao X, Lv Z, Abdelilah T, Lei A. Chem. Rev. 2019; 119: 6769
- 1d Capaldo L, Ravelli D, Fagnoni M. Chem. Rev. 2022; 122: 1875
- 2a Shen X, Zhao J.-J, Yu S. Org. Lett. 2018; 20: 5523
- 2b Zeng X, Yan W, Paeth M, Zacate SB, Hong P.-H, Wang Y, Yang D, Yang K, Yan T, Song C, Cao Z, Cheng M.-J, Liu W. J. Am. Chem. Soc. 2019; 141: 19941
- 2c Capaldo L, Merli D, Fagnoni M, Ravelli D. ACS Catal. 2019; 9: 3054
- 2d Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366
- 2e Zhuang Z, Herron AN, Yu J.-Q. Angew. Chem. Int. Ed. 2021; 60: 16382
- 2f Tang S, Guillot R, Grimaud L, Vitale MR, Vincent G. Org. Lett. 2022; 24: 2125
- 2g Gou X.-Y, Li Y, Shi W.-Y, Luan Y.-Y, Ding Y.-N, An Y, Huang Y.-C, Zhang B.-S, Liu X.-Y, Liang Y.-M. Angew. Chem. Int. Ed. 2022; 61: e202205656
- 2h Li B, Qin H, Yan K, Ma J, Yang J, Wen J. Org. Chem. Front. 2022; 9: 6861
- 3a Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
- 3b Baslé O, Li C.-J. Green Chem. 2007; 9: 1047
- 3c Tsang AS.-K, Todd MH. Tetrahedron Lett. 2009; 50: 1199
- 3d Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077
- 3e Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
- 3f Pan Y, Kee CW, Chen L, Tan C-H. Green Chem. 2011; 13: 2682
- 3g Alagiri K, Prabhu KR. Org. Biomol. Chem. 2012; 10: 835
- 3h Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574
- 3i Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
- 3j Tanoue A, Yoo W.-J, Kobayashi S. Adv. Synth. Catal. 2013; 355: 269
- 3k Ueda H, Yoshida K, Tokuyama H. Org. Lett. 2014; 16: 4194
- 3l Wu C.-J, Zhong J.-J, Meng Q.-Y, Lei T, Gao X.-W, Tung C.-H, Wu L.-Z. Org. Lett. 2015; 17: 884
- 3m Brzozowski M, Forni JA, Paul Savage G, Polyzos A. Chem. Commun. 2015; 51: 334
- 3n Patil MR, Dedhia NP, Kapdi AR, Kumar AV. J. Org. Chem. 2018; 83: 4477
- 4a Liu J, Zheng L. Adv. Synth. Catal. 2019; 361: 1710
- 4b Lapuh MI, Mazeh S, Besset T. ACS Catal. 2020; 10: 12898
- 4c Liu B, Romine AM, Rubel CZ, Engle KM, Shi B.-F. Chem. Rev. 2021; 121: 14957
- 4d Jeong S, Joo JM. Acc. Chem. Res. 2021; 54: 4518
- 5a Yuan Y, Zhang S, Sun Z, Su Y, Ma Q, Yuan Y, Jia X. Org. Lett. 2020; 22: 6294
- 5b Su Y, Zhang S, Yuan Y, Ma Q, Sun Z, Yuan Y, Jia X. Chem. Commun. 2021; 57: 9878
- 5c Li Y, Zhang S, Ma Q, Ding H, Sun Z, Yuan Y, Jia X. Chem Asian J. 2022; 17: e202200656
- 6a Huang Y.-Z. Acc. Chem. Res. 1992; 25: 182
- 6b Norman NC. Chemistry of Arsenic, Antimony and Bismuth . Blackie Academic & Professional; London: 1998
- 6c Yamamoto H, Oshima K. Main Group Metals in Organic Synthesis . Wiley-VCH; Weinheim: 2004: 753-812
- 7a Wnuk SF, Robins MJ. J. Org. Chem. 1990; 55: 4757
- 7b Robins MJ, Wnuk SF. J. Org. Chem. 1993; 58: 3800
- 7c Cho CS, Motofusa S, Uemura S. Tetrahedron Lett. 1994; 35: 1739
- 7d Kobayashi S, Komoto I. Tetrahedron 2000; 56: 6463
- 7e Singh MC, Peddinti RK. Tetrahedron Lett. 2007; 48: 7354
- 7f Ambica, Kumar S, Taneja SC, Hundal MS, Kapoor KK. Tetrahedron Lett. 2008; 49: 2208
- 7g Simpson Q, Sinclair MJ. G, Lupton DW, Chaplin AB, Hooper JF. Org. Lett. 2018; 20: 5537
- 7h Kitamura Y, Murata Y, Oguri A, Matsumura M, Kakusawa N, Naka H, Yasuike S. Asian J. Org. Chem. 2019; 8: 138
- 7i Zhang D, Le L, Qiu R, Wong W.-Y, Kambe N. Angew. Chem. Int. Ed. 2021; 60: 3104
- 8 When 30 mL of MeNO2 was used in the gram-scale reaction, the yield of 3q was reduced to 79%.
- 9 Luo Y.-R. Handbook of Bond Dissociation Energy in Organic Compounds. CRC Press; Boca Raton, FL: 2002
- 10 Rusch F, Unkel L.-N, Alpers D, Hoffmann F, Brasholz MA. Chem. Eur. J. 2015; 21: 8336
- 11 Kang X, Wu X, Han X, Yuan C, Liu Y, Cui Y. Chem. Sci. 2020; 11: 1494
- 12 Jiang J.-X, Li Y, Wu X, Xiao J, Adams DJ, Cooper AI. Macromolecules 2013; 46: 8779
- 13 Sharma K, Borah A, Neog K, Gogoi DP. ChemistrySelect 2016; 1: 4620
- 14 Lin C, Li P, Wang L. Tetrahedron Lett. 2021; 73: 153102
- 15 Liu Y, Wang C, Xue D, Xiao M, Liu J, Li C, Xiao J. Chem. Eur. J. 2017; 23: 3062
- 16 Aganda KC. C, Hong B, Lee A. Adv. Synth. Catal. 2019; 361: 1124
Reviews on C–C coupling via C–H bond functionalization:
Selected examples of C–C bond formation via C–H activation:
CDC reactions of C–C bond formation: