Subscribe to RSS
DOI: 10.1055/a-2009-3541
Long-COVID und Post-COVID-Syndrom
Zusammenfassung
Unter dem Post-COVID-Syndrom (PCS) versteht man eine länger als 12 Wochen anhaltende Symptomatik mit Fatigue, Kurzatmigkeit, eingeschränkter Leistungsfähigkeit u. a., die bei rund 15% der Patienten nach einer akuten Infektion mit SARS-CoV-2 auftritt. Als Ursache werden Veränderungen im Mikrobiom und Störungen des Tryptophanstoffwechsels diskutiert, welche zu einer vermehrten Umwandlung von Tryptophan in prooxidativ und proinflammatorisch wirkende Abbauprodukte führen. Nach aktuellen Studien können infolge der Infektion latente Viren wie Epstein-Barr-, Cytomegalie- und Varizella-Zoster-Virus reaktiviert werden und PCS-typische Symptome auslösen. Eine überschießende Entzündungsreaktion bei COVID-19 führt zur Bildung von Autoantikörpern, die durch Einschränkung der Immunantwort die Virusbekämpfung erschweren. Therapeutisch kann eine Supplementierung von Mikronährstoffen wie Vitamin C, D, E, B6, B12, ω-3-Fettsäuren und Coenzym Q10 sinnvoll sein.
Schlüsselwörter
Long-COVID - Post-COVID-Syndrom - Diagnostik - Tryptophan-Stoffwechsel - Mikrobiom - Epstein-Barr-Virus - Herpesviren - Autoantikörper - Therapie - MikronährstoffePublication History
Article published online:
24 March 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) e. V. S1-Leitlinie Long-/Post-COVID; Registernummer 020–027 https://register.awmf.org/de/leitlinien/detail/020-027 (Stand: 03.01.2023)
- 2 Garg P. et al. The „post-COVID“ syndrome: How deep ist the damage?. Journal of Medical Virology 2021; 93: 673-674
- 3 Goërtz YMJ. et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome?. ERJ Open Research 2020; 6: 00542-02020
- 4 Pal R. COVID-19, hypothalamo-pituitary-adrenal axis and clinical implications. Endocrine 2020; 68: 251-252
- 5 Russell A. et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology 2019; 100: 276-285
- 6 Naviaux RK. et al. Metabolic features of chronoc fatigue syndrome. Proc Natl Acad Sci U S A 2016; 113: E5472-E5480
- 7 Wood E. et al. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitit/chronic fatigue syndrome: A possible approach to SARS-CoV-2 ‚long-haulers‘?. Chronic Dis Transl Med 2021; 7: 14-26
- 8 Thomas T. et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020; 5: e140327
- 9 Barberis E. et al. Large-Scale Plasma Analysis Revealed New Mechanisms and Molecules Associated with the Host response to SARS-CoV-2. International Journal of Molecular Sciences 2020; 21: 8623
- 10 Lionetto L. et al. Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: An observational cohort study. BBA-Molecular Basis of Disease 2020; 1867: 166042
- 11 Cervenka I. et al. Kynurenines: Tryptophan’s metabolites in exercise, inflammation and mental health. Science 2017; 357: eaaf9794
- 12 Yamashita M. et al. Potential Role of Neuroactive Tryptophan Metabolites in Central Fatigue: Establishment of the Fatigue Circuit. International Journal of Tryptophan Research 2020; 13: 1178646920936279
- 13 Németh H. et al. Role of kynurenines in the central and peripheral nervous systems. Current Neurovascular Research 2005; 2: 249-260
- 14 Yamamoto T. et al. Essential role of excessive tryptophan and its neurometabolites in fatigue. Canadian Journal of Neurological Sciences 2012; 39: 40-47
- 15 Zuo T. et al. Alterations in Fecal Fungal Microbiome of Patients With COVID-19 During Time of Hospitalization until Discharge. Gastroenterology 2020; 159: 1302-1310
- 16 Zuo T. et al. Alterations in Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020; 159: 944-955
- 17 Kinashi Y, Hase K. Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. Front Immunology 2021; 12: 673708
- 18 Choi SC. et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med 2020; 8: 551
- 19 Solomay TV. et al. Reactivation of Epstein-Barr virus (Herpesviridae: Lymphocryptovirus, HHV-4) infection during COVID-19: epidemiological features. Problems of Virology 2021; 66: 152-161
- 20 Smatti MK. et al. Epstein-Barr Virus Epidemiology, Serology, and Genetic Variability of LMP-1 Oncogene Among Healthy Population: An Update. Frontiers in Oncology 2018; 8: 211
- 21 Xie Y. et al. Clinical characteristics and outcomes of critically ill patients with acute COVID-19 with Epstein-Barr virus reactivation. BMC Infectious Disaeses 2021; 21: 1-8
- 22 Simonnet A. et al. High incidence of Epstein-Barr virus, cytomegalovirus, and human-herpes virus-6 reactivations in critically ill patients with COVID-19. Infectious Diseases Now 2021; 51: 296-299
- 23 Rojas M. et al. Autoimmunity is a hallmark of post-COVID syndrome. Journal of translational medicine 2022; 20: 1-5
- 24 Chang S. et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nature communications 2021; 12: 1-15
- 25 Gao ZW. et al. Autoantibodies in COVID-19: frequency and function. Autoimmunity Reviewes 2021; 20: 102754
- 26 Wang EY. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 2021; 595: 283-288
- 27 Doaei S. et al. The effect of omega-3 fatty acid supplementation on clinical and biochemical parameters of critically ill patients with COVID-19: a randomized clinical trial. Journal of translational medicine 2021; 19: 1-9
- 28 Vollbracht C. et al. Feasibility of Vitamin C in the Treatment of Post Viral Fatigue with Focus on Long COVID, Based on a Systematic Review of IV Vitamin C on Fatigue. Nutrients 2021; 13: 1154
- 29 Banerjee RV. et al. Cobalamin-dependent methionine synthase. FASEB Journal 1990; 4: 1450-1459
- 30 Kryukov EV. et al. Plasma S-Adenosylmethionine Is Associated with Lung Injury in COVID-19. Disease Markers 2021; 7686374
- 31 Gvozdjakova A. et al. Is mitochondrial bioenergetics and coenzyme Q10 the target of a virus causing COVID-19?. Bratislavske lekarke listy 2020; 121: 775-778
- 32 Akhtar S. et al. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutrition reviews 2021; 79: 289-300
- 33 Bastard P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci Immunol 2021; 6 (62): eabl4340