Subscribe to RSS
DOI: 10.1055/a-2006-1975
The Effect of Cycloplegia on the Biometer for Optical Low-coherence Reflectometry
Die Auswirkung von Zykloplegie auf das optische Niedrigkohärenz-Reflektometrie-BiometerAbstract
Purpose The aim of this study was to compare the biometric measurements and different formulas for calculating intraocular lens (IOL) power by using the Lenstar LS900 biometer for optical low-coherence reflectometry before and after induction of cycloplegia in the adult population.
Materials and Methods In this cross-sectional study, 168 eyes of 168 healthy volunteers aged 40 – 86 years (59.22 ± 11.57) were included. Biometric measurements, including axial length (AL), anterior chamber depth (ACD), keratometry (K1 and K2), and white-to-white (WTW) were compared using a Lenstar LS900 optical biometer before and after induction of cycloplegia with 1% cyclopentolate. The IOL power was also compared using six different formulas (Barrett Universal II, Haigis, SRK/T, Hoffer Q, Holladay, and SRK-II) for the AcrySof MA60AC IOL before and after induction of cycloplegia.
Results There were no statistically significant differences in AL, K1 and K2, or WTW measurements before and after induction of cycloplegia. There was a significant increase only in ACD from the biometric parameters after the induction of cycloplegia (p < 0.05). Despite this change, there were no significant changes in IOL power calculations using the six different formulas before and after induction of cycloplegia.
Conclusions This study demonstrated that IOL power measurements using the Lenstar LS900 can be performed after cycloplegia.
Zusammenfassung
Zweck Das Ziel dieser Studie ist es, die biometrischen Messungen und verschiedene Formeln zur Berechnung der Intraokularlinsenstärke unter Verwendung des optischen Low-Coherence-Reflektometrie-Biometers Lenstar LS900 vor und nach der Induktion von Zykloplegie bei Erwachsenen zu vergleichen.
Material und Methoden In diese Querschnittsstudie wurden 168 Augen von 168 gesunden Freiwilligen im Alter von 40 – 86 Jahren (59,22 ± 11,57) eingeschlossen. Biometrische Messungen, einschl. Achsenlänge (AL), Vorderkammertiefe (ACD), Keratometrie (K1, K2) und Weiß-zu-Weiß (WTW), wurden mit einem optischen Biometriegerät Lenstar LS900 vor und nach Induktion einer Zykloplegie mit Cyclopentolat 1% verglichen. Die Stärke der Intraokularlinse (IOL) wurde auch unter Verwendung von 6 verschiedenen Formeln (Barrett Universal II, Haigis, SRK/T, Hoffer Q, Holladay und SRK-II) für die Intraokularlinse AcrySof MA60AC vor und nach Induktion der Zykloplegie verglichen.
Ergebnisse Es gab keine statistisch signifikanten Unterschiede in Achslänge, Keratometrie (K1 und K2) oder Weiß-zu-Weiß-Messungen vor und nach Induktion der Zykloplegie. Es gab nur einen signifikanten Anstieg der ACD aus den biometrischen Parametern nach der Induktion der Zykloplegie (p < 0,05). Trotz dieser Änderung gab es keine signifikanten Änderungen bei den Berechnungen der IOL-Stärke unter Verwendung der 6 verschiedenen Formeln vor und nach der Induktion der Zykloplegie.
Schlussfolgerungen Diese Studie zeigte, dass IOL-Stärkemessungen mit dem Lenstar LS900 nach Zykloplegie durchgeführt werden können.
Already known:
-
As shown in previous studies, ACD from biometric measurements increases after the use of mydriatic agents, but the IOL power calculation is not affected by this increase when the SRK/T formula is used.
Newly described:
-
In particular, different results have been reported in studies examining new generation multivariable formulas after pupil dilation.
-
The current study suggests that the Lenstar LS900, an optical low-coherence reflectometry biometry device, can also be used after cycloplegia with the Barrett Universal II, SRK/T, Hoffer-Q, Haigis, Holladay, and SRK-II formulas in adults.
Publication History
Received: 29 September 2022
Accepted: 23 December 2022
Accepted Manuscript online:
03 January 2023
Article published online:
29 March 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Salouti R, Nowroozzadeh MH, Zamani M. et al. Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation. Optometry 2011; 82: 140-147
- 2 Vogel A, Dick HB, Krummenauer F. Reproducibility of optical biometry using partial coherence interferometry: intraobserver and interobserver reliability. J Cataract Refract Surg 2001; 27: 1961-1968
- 3 Hoffer KJ, Shammas HJ, Savini G. Comparison of 2 laser instruments for measuring axial length. J Cataract Refract Surg 2010; 36: 644-648
- 4 Buckhurst PJ, Wolffsohn JS, Shah S. et al. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 2009; 93: 949-953
- 5 Fercher AF, Mengedoht K, Werner W. Eye‐length measurement by interferometry with partially coherent light. Opt Lett 1988; 13: 186-188
- 6 Shammas HJ, Hoffer KJ. Repeatability and reproducibility of biometry and keratometry measurements using a noncontact optical low‐coherence reflectometer and keratometer. Am J Ophthalmol 2012; 153: 55-61
- 7 Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2007; 85: 472-485
- 8 Olsen T, Thom K, Corydon L. Theoretical versus SRK I and SRK II calculation of intraocular lens power. J Cataract Refract Surg 1990; 16: 217-225
- 9 Holladay JT, Prager TC, Chandler TY. et al. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 1988; 14: 17-24
- 10 Barrett GD. An Improved universal theoretical formula for intraocular lens power prediction. J Cataract Refract Surg 1993; 19: 713-720
- 11 Haigis W, Lege B, Miller N. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 2000; 238: 765-773
- 12 Tsessler M, Cohen S, Wang L. et al. Evaluating the prediction accuracy of the Hill-Rbf 3.0 formula using a heteroscedastic statistical method. J Cataract Refract Surg 2022; 48: 37-43
- 13 Connell BJ, Kane JX. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 2019; 4: e000251
- 14 Ladas J, Ladas D, Lin SR. et al. Improvement of multiple generations of intraocular lens calculation formulae with a novel approach using artificial intelligence. Transl Vis Sci Technol 2021; 10: 7
- 15 Siddiqui AA, Ladas JG, Lee JK. Artificial intelligence in cornea, refractive, and cataract surgery. Curr Opin Ophthalmol 2020; 31: 253-260
- 16 Adler G, Shahar J, Kesner R. et al. Effect of pupil size on biometry measurements using the IOL Master. Am J Ophthalmol 2015; 159: 940-944
- 17 Heatley CJ, Whitefield LA, Hugkulstone CE. Effect of pupil dilation on the accuracy of the IOLMaster. J Cataract Refract Surg 2002; 28: 1993-1996
- 18 Tsuchiya AK, Tanaka K, Sakurada I. et al. Ultrasound biomicroscopic measurement of anterior chamber biometry between before and after pupil dilation in children. Eur J Ophthalmol 2008; 18: 532-539
- 19 Yazdani N, Sadeghi R, Momeni-Moghaddam H. et al. Comparison of cyclopentolate versus tropicamide cycloplegia: A systematic review and meta-analysis. J Optom 2018; 11: 135-143
- 20 Packer M, Fine IH, Hoffman RS. et al. Immersion A-scan compared with partial coherence interferometry; outcomes analysis. J Cataract Refract Surg 2002; 28: 239-242
- 21 Bhatt AB, Schefler AC, Feuer WJ. et al. Comparison of predictions made by the intraocular lens master and ultrasound biometry. Arch Ophthalmol 2008; 126: 929-933
- 22 Arriola-Villalobos P, Almendral-Gómez J, Garzon N. et al. Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye (Lond) 2017; 31: 437-442
- 23 Rohrer K, Frueh BE, Walti R. et al. Comparison and evaluation of ocular biometry using a new noncontact optical low‐coherence reflectometer. Ophthalmology 2009; 116: 2087-2092
- 24 Rabsilber TM, Jepsen C, Auffarth GU. et al. Intraocular lens power calculation: clinical comparison of 2 optical biometry devices. J Cataract Refract Surg 2010; 36: 230-234
- 25 Bjeloš Rončević M, Bušić M, Cima I. et al. Intraobserver and interobserver repeatability of ocular components measurement in cataract eyes using a new optical low coherence reflectometer. Graefes Arch Clin Exp Ophthalmol 2011; 249: 83-87
- 26 Arriola-Villalobos P, Díaz-Valle D, Garzòn N. et al. Effect of pharmacologic pupil dilation on OLCR optical biometry measurements for IOL predictions. Eur J Ophthalmol 2014; 24: 53-57
- 27 Autrata D, Chrapek O, Drahorád S. Effect of pharmacological pupil dilation on intraocular lens power calculation in patients indicated for cataract surgery. Cesk Slov Oftalmol 2021; 77: 192-200
- 28 Khambhiphant B, Chatbunchachai N, Pongpirul K. The effect of pupillary dilatation on IOL power measurement by using the IOLMaster. Int Ophthalmol 2015; 35: 853-859
- 29 Huang J, McAlinden C, Su B. et al. The effect of cycloplegia on the Lenstar and the IOLMaster biometry. Optom Vis Sci 2012; 89: 1691-1696
- 30 Bakbak B, Koktekir BE, Gedik S. et al. The effect of pupil dilation on biometric parameters of the Lenstar 900. Cornea 2013; 32: e21-e24
- 31 Wang X, Dong J, Tang M. et al. Effect of pupil dilation on biometric measurements and intraocular lens power calculations in schoolchildren. PLoS One 2018; 13: e0203677
- 32 Rodriguez-Raton A, Jimenez-Alvarez M, Arteche-Limousin L. et al. Effect of pupil dilation on biometry measurements with partial coherence interferometry and Its effect on IOL power formula calculation. Eur J Ophthalmol 2015; 25: 309-314
- 33 Khambhiphant B, Sasiwilasagorn S, Chatbunchachai N. et al. Effect of pupillary dilation on Haigis formula-calculated intraocular lens power measurement by using optical biometry. Clin Ophthalmol 2016; 10: 1405-1410
- 34 Balsak S. Effects of pupillary dilation on ocular optical biometry outcomes in pediatric patients. Arq Bras Oftalmol 2020; 83: 289-293
- 35 Simon NC, Farooq AV, Zhang MH. et al. The effect of pharmacological dilation on calculation of targeted and ideal IOL power using multivariable formulas. Ophthalmol Ther 2020; 9: 1-11