Rofo 2023; 195(06): 506-513
DOI: 10.1055/a-1999-7271
Review

Myocardial Evaluation in Patients with Aortic Stenosis by Cardiac Computed Tomography

Beurteilung des Myokards bei Patienten mit Aortenstenose durch kardiale Computertomografie
Francisco F. Gama
1   Cardiology, Hospital Centre of West Lisbon Campus Hospital of Santa Cruz, Lisboa, Portugal
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
,
Kush Patel
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
,
Jonathan Bennett
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
,
Nikoo Aziminia
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
,
Francesca Pugliese
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
,
Thomas Treibel
2   Cardiac Imaging, Barts Health NHS Trust, London, United Kingdom of Great Britain and Northern Ireland
› Institutsangaben

Abstract

Background Aortic valve stenosis (AVS) is one of the most prevalent pathologies affecting the heart that can curtail expected survival and quality of life if not managed appropriately.

Current Status Cardiac computed tomography (CT) has long played a central role in this subset, mostly for severity assessment and for procedural planning. Although not as widely accepted as other imaging modalities for functional myocardial assessment [i. e., transthoracic echocardiogram (TTE), cardiac magnetic resonance (CMR)], this technique has recently increased its clinical application in this regard.

Future Outlook The ability to provide morphological, functional, tissue, and preprocedural information highlights the potential of the “all-in-one” concept of cardiac CT as a potential reality for the near future for AVS assessment. In this review article, we sought to analyze the current applications of cardiac CT that allow a full comprehensive evaluation of aortic valve disease.

Key Points:

  • Noninvasive myocardial tissue characterization stopped being an exclusive feature of cardiac magnetic resonance.

  • Emerging acquisition methods make cardiac CT an accurate and widely accessible imaging modality.

  • Cardiac CT has the potential to become a "one-stop" exam for comprehensive aortic stenosis assessment.

Citation Format

  • Gama FF, Patel K, Bennett J et al. Myocardial Evaluation in Patients with Aortic Stenosis by Cardiac Computed Tomography. Fortschr Röntgenstr 2023; 195: 506 – 513

Zusammenfassung

Hintergrund Die Aortenklappenstenose (AVS) ist eine der häufigsten Erkrankungen des Herzens, die bei unzureichender Behandlung die Lebenserwartung und Lebensqualität beeinträchtigen kann.

Aktueller Stand Die kardiale Computertomografie (CT) spielt auf diesem Gebiet seit langem eine zentrale Rolle, vor allem zur Einschätzung des Schweregrads und zur Planung von Eingriffen. Obwohl diese Technik zur Beurteilung der Myokardfunktion nicht so weit verbreitet ist wie andere bildgebende Verfahren [z. B. transthorakales Echokardiogramm (TTE), kardiale Magnetresonanztomografie (CMR)], wird sie in letzter Zeit verstärkt in der klinischen Praxis eingesetzt.

Zukunftsperspektiven Die Fähigkeit, präoperationell Informationen über Morphologie, Funktion und das Gewebe zu liefern, unterstreicht das Fähigkeit der kardialen CT als „All-in-One“-Konzept, das zur Beurteilung der AVS möglicherweise in naher Zukunft realisiert wird. In diesem Übersichtsartikel haben wir versucht, die aktuellen Anwendungen der kardialen CT zu analysieren, die eine vollständige und umfassende Beurteilung der Erkrankungen der Aortenklappen ermöglichen.

Kernaussagen:

  • Die nicht-invasive Charakterisierung des Myokardgewebes ist nicht mehr ausschließlich der kardialen Magnetresonanz vorbehalten.

  • Neue Aquisitionsmethoden machen die kardiale CT zu einer genauen und allgemein zugänglichen Bildgebungsmodalität.

  • Die kardiale CT hat das Potenzial, sich zu einer „One-Stop“-Untersuchung für eine umfassende Beurteilung der Aortenstenose zu entwickeln.



Publikationsverlauf

Eingereicht: 14. September 2022

Angenommen: 01. Dezember 2022

Artikel online veröffentlicht:
28. Februar 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Iung B, Victoria D, Raphael R. et al. Contemporary Presentation and Management of Valvular Heart Disease: The EURObservational Research Programme Valvular Heart Disease II Survey. Circulation 2019; 140 (14) 1156-1169
  • 2 Yadgir S, Catherine OJ, Victor A. et al. Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017. Circulation 2020; 141 (21) 1670-1680
  • 3 Budts W, Pieles GE, Roos-Hesselink JW. et al. Recommendations for participation in competitive sport in adolescent and adult athletes with Congenital Heart Disease (CHD): position statement of the Sports Cardiology & Exercise Section of the European Association of Preventive Cardiology (EAPC), the European Society of Cardiology (ESC) Working Group on Adult Congenital Heart Disease and the Sports Cardiology, Physical Activity and Prevention Working Group of the Association for European Paediatric and Congenital Cardiology (AEPC). Eur Heart J 2020; 41: 41914199
  • 4 Nkomo VT, Gardin JM. et al. Burden of Valvular Heart Diseases: A Population-Based Study. The Lancet 2006; 368: 1005-1011
  • 5 Vahanian A, Ottavio A, Felicita A. et al. Guidelines on the Management of Valvular Heart Disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). European Heart Journal 2012; 33 (19) 2451-2496
  • 6 Olsson ML, Granström D, Lindblom M. et al. Aortic Valve Replacement in Octogenarians with Aortic Stenosis: A Case-Control Study. Journal of the American College of Cardiology 1992; 20 (07) 1512-1516
  • 7 Olsson M, Janfjäll H, Orth-Gomér K. et al. Quality of Life in Octogenarians after Valve Replacement due to Aortic Stenosis. A Prospective Comparison with Younger Patients. European Heart Journal 17 (04) 583-589
  • 8 Shapira OM, Kelleher RM, Zelingher J. et al. Prognosis and Quality of Life after Valve Surgery in Patients Older than 75 Years. Chest 112 (04) 885-894
  • 9 Jacek K, Calvin WL, Everett R. et al. Adverse Prognosis Associated with Asymmetric Myocardial Thickening in Aortic Stenosis. European Heart Journal Cardiovascular Imaging 19 (03) 347-356
  • 10 Stassen J, See HE, Steele C. et al. Prognostic Implications of Left Ventricular Diastolic Dysfunction in Moderate Aortic Stenosis. Heart 2022; DOI: 10.1136/heartjnl-2022-320886.
  • 11 Connolly HM, Oh J, Thomas AO. et al. Aortic Valve Replacement for Aortic Stenosis With Severe Left Ventricular Dysfunction. Circulation 95 (10) 2395-2400
  • 12 Everett RJ, Marie-Annick C, Pibarot P. et al. Timing of Intervention in Aortic Stenosis: A Review of Current and Future Strategies. Heart 104 (24) 2067-2076
  • 13 Vahanian A, Beyersdorf F, Praz F. et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease. European Heart Journal 2022; 43 (07) 561-632
  • 14 Treibel TA, Begoña L, González A. et al. Reappraising Myocardial Fibrosis in Severe Aortic Stenosis: An Invasive and Non-Invasive Study in 133 Patients. European Heart Journal 2018; 39 (08) 699-709
  • 15 Tastet L, Tribouilloy C, Marechaux S. et al. Staging cardiac damage in patients with asymptomatic aortic valve stenosis. J Am Coll Cardiol 2019; 74: 550563
  • 16 Prihadi EA, Vollema EM, Ng ACT. et al. Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis. Eur Heart J Cardiovasc Imaging 2019; 20: 740748
  • 17 Baumgartner HC, Hung JC-C, Bermejo J. et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 2017; 18: 254275
  • 18 Magne J, Cosyns B, Popescu BA. et al. Distribution and prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: an individual participant data meta-analysis. JACC Cardiovasc Imaging 2019; 12: 849
  • 19 Clavel MA, Magne J, Pibarot P. Low-gradient aortic stenosis. Eur Heart J 2016; 37 (34) 2645-2657
  • 20 Clavel MA, Messika-Zeitoun D, Pibarot P. et al. The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler echocardiographic and computed tomographic study. J Am Coll Cardiol 2013; 62: 23292338
  • 21 Grodecki K, Tamarappoo BK, Huczek Z. et al. Non-calcific aortic tissue quantified from computed tomography angiography improves diagnosis and prognostication of patients referred for transcatheter aortic valve implantation. Eur Heart J Cardiovasc Imaging 2021; 22 (06) 626-635
  • 22 Fortuni F, Delgado V. Assessment of aortic valve stenosis severity: multimodality imaging may be the key. Eur Heart J Cardiovasc Imaging 2020; 21 (10) 1103-1104
  • 23 Dweck MR, Boon NA, Newby DE. Calcific Aortic Stenosis: A Disease of the Valve and the Myocardium. Journal of the American College of Cardiology 60 (19) 1854-1863
  • 24 Díez J, González A, Kovacic JC. Myocardial Interstitial Fibrosis in Nonischemic Heart Disease, Part 3/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75 (17) 2204-2218
  • 25 Cheitlin MD, Robinowitz M, McAllister H. et al. The Distribution of Fibrosis in the Left Ventricle in Congenital Aortic Stenosis and Coarctation of the Aorta. Circulation 1980; 62 (04) 823-830
  • 26 Moreno MU, Gallego I, López B. et al. Decreased Nox4 levels in the myocardium of patients with aortic valve stenosis. Clin Sci (Lond) 2013; 125 (06) 291-300
  • 27 Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. J Mol Cell Cardiol 2016; 94: 22-31
  • 28 Puntmann VO, Peker E, Chandrashekhar Y. et al. T1 mapping in characterising myocardial disease: a comprehensive review. Circ Res 2016; 119: 277-299
  • 29 Treibel TA, Kozor R, Schofield R. et al. Reverse Myocardial Remodeling Following Valve Replacement in Patients With Aortic Stenosis. J Am Coll Cardiol 2018; 71 (08) 860-871
  • 30 Fairbairn TA, Steadman CD, Mather AN. et al. Assessment of valve haemodynamics, reverse ventricular remodelling and myocardial fibrosis following transcatheter aortic valve implantation compared to surgical aortic valve replacement: a cardiovascular magnetic resonance study. Heart 2013; 99 (16) 1185-1191
  • 31 Hess OM, Ritter M, Schneider J. et al. Diastolic Stiffness and Myocardial Structure in Aortic Valve Disease before and after Valve Replacement. Circulation 69 (05) 855-865
  • 32 Krayenbuehl HP, Hess OM, Monrad ES. et al. Left Ventricular Myocardial Structure in Aortic Valve Disease Before, Intermediate, and Late after Aortic Valve Replacement. Circulation 79 (04) 744-755
  • 33 Barone-Rochette G, Piérard S, De Meester de Ravenstein C. et al. Prognostic significance of LGE by CMR in aortic stenosis patients undergoing valve replacement. J Am Coll Cardiol 2014; 64: 144-154
  • 34 Dweck MR, Joshi S, Murigu T. et al. Midwall Fibrosis Is an Independent Predictor of Mortality in Patients with Aortic Stenosis. Journal of the American College of Cardiology 58 (12) 1271-1279
  • 35 Everett RJ, Treibel TA, Fukui M. et al. Extracellular Myocardial Volume in Patients With Aortic Stenosis. J Am Coll Cardiol 2020; 75 (03) 304-316
  • 36 Schlosser T, Mohrs OK, Magedanz A. et al. Assessment of Left Ventricular Function and Mass in Patients Undergoing Computed Tomography (CT) Coronary Angiography Using 64-Detector-Row CT: Comparison to Magnetic Resonance Imaging. Acta Radiologica 48 (01) 30-35
  • 37 Asferg C, Usinger L, Kristensen TS. et al. Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and meta-analysis. Eur J Radiol 2012; 81 (05) e757-e762 DOI: 10.1016/j.ejrad.2012.02.002.
  • 38 Szilveszter B, Nagy AI, Vattay B. et al. Left ventricular and atrial strain imaging with cardiac computed tomography: Validation against echocardiography. J Cardiovasc Comput Tomogr 2020; 14 (04) 363-369
  • 39 Gerber BL, Belge B, Legros GJ. et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006; 113 (06) 823-833
  • 40 Gerber BL, Belge B, Legros GJ. et al. Characterization of acute and chronic myocardial infarcts by multidetector computed tomography: comparison with contrast-enhanced magnetic resonance. Circulation 2006; 113 (06) 823-833
  • 41 Rodriguez-Granillo GA. Delayed enhancement cardiac computed tomography for the assessment of myocardial infarction: from bench to bedside. Cardiovasc Diagn Ther 2017; 7 (02) 159-170
  • 42 Coelho-Filho OR, Mongeon FP, Mitchell R. et al. Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging 2013; 6 (01) 134-141
  • 43 Assen MV, Vonder M, Pelgrim GJ. et al. Computed tomography for myocardial characterization in ischemic heart disease: a state-of-the-art review. Eur Radiol Exp 2020; 4 (01) 36
  • 44 Aikawa T, Oyama-Manabe N, Naya M. et al. Delayed contrast-enhanced computed tomography in patients with known or suspected cardiac sarcoidosis: A feasibility study. Eur Radiol 2017; 27 (10) 4054-4063
  • 45 Zhao L, Ma X, Feuchtner GM. et al. Quantification of myocardial delayed enhancement and wall thickness in hypertrophic cardiomyopathy: multidetector computed tomography versus magnetic resonance imaging. Eur J Radiol 2014; 83 (10) 1778-1785
  • 46 Deux JF, Mihalache CI, Legou F. et al. Noninvasive detection of cardiac amyloidosis using delayed enhanced MDCT: a pilot study. Eur Radiol 2015; 25 (08) 2291-2297
  • 47 Bandula S, White SK, Flett AS. et al. Measurement of myocardial extracellular volume fraction by using equilibrium contrast-enhanced CT: validation against histologic findings. Radiology 2013; 269 (02) 396-403 DOI: 10.1148/radiology.13130130.
  • 48 Treibel TA, Bandula S, Fontana M. et al. Extracellular volume quantification by dynamic equilibrium cardiac computed tomography in cardiac amyloidosis. J Cardiovasc Comput Tomogr 2015; 9 (06) 585-592
  • 49 Scully PR, Patel KP, Klotz E. et al. Myocardial Fibrosis Quantified by Cardiac CT Predicts Outcome in Severe Aortic Stenosis After Transcatheter Intervention. JACC Cardiovasc Imaging 2022; 15 (03) 542-544
  • 50 Suzuki M, Toba T, Izawa Y. et al. Prognostic Impact of Myocardial Extracellular Volume Fraction Assessment Using Dual-Energy Computed Tomography in Patients Treated With Aortic Valve Replacement for Severe Aortic Stenosis. J Am Heart Assoc 2021; 10 (18) e020655
  • 51 Tamarappoo B, Han D, Tyler J. et al. Prognostic Value of Computed Tomography-Derived Extracellular Volume in TAVR Patients With Low-Flow Low-Gradient Aortic Stenosis. JACC Cardiovasc Imaging 2020; 13 (12) 2591-2601
  • 52 Nitsche C, Scully PR, Patel KP. et al. Prevalence and Outcomes of Concomitant Aortic Stenosis and Cardiac Amyloidosis. J Am Coll Cardiol 2021; 77 (02) 128-139
  • 53 Ternacle J, Krapf L, Mohty D. et al. Aortic Stenosis and Cardiac Amyloidosis: JACC Review Topic of the Week. J Am Coll Cardiol 2019; 74 (21) 2638-2651
  • 54 Scully PR, Patel KP, Klotz E. et al. Myocardial Fibrosis Quantified by Cardiac CT Predicts Outcome in Severe Aortic Stenosis After Transcatheter Intervention. JACC Cardiovasc Imaging 2022; 15 (03) 542-544
  • 55 Maurer MS, Schwartz JH, Gundapaneni B. et al. Tafamidis Treatment for Patients with Transthyretin Amyloid Cardiomyopathy. N Engl J Med 2018; 379 (11) 1007-1016
  • 56 Adams D, Gonzalez-Duarte A, O’Riordan WD. et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379 (01) 11-21
  • 57 Benson MD, Waddington-Cruz M, Berk JL. et al. Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 2018; 379 (01) 22-31
  • 58 Fortuni F, Delgado V. Assessment of aortic valve stenosis severity: multimodality imaging may be the key. Eur Heart J Cardiovasc Imaging 2020; 21 (10) 1103-1104
  • 59 Goo HW. Radiation dose, contrast enhancement, image noise and heart rate variability of ECG-gated CT volumetry using 3D threshold-based segmentation: Comparison between conventional single scan and dual focused scan methods. Eur J Radiol 2021; 137: 109606
  • 60 Willemink MJ, Persson M, Pourmorteza A. et al. Photon-counting CT: technical principles and clinical prospects. Radiology 2018; 289: 293-312
  • 61 Alkadhi H, Euler A. The future of computed tomography: personalized, functional, and precise. Invest Radiol 2020; 55: 545-555
  • 62 Petritsch B, Petri N, Weng AM. et al. Photon-counting computed tomography for coronary stent imaging: in vitro evaluation of 28 coronary stents. Invest Radiol 2021; 56: 653-660
  • 63 Sandstedt M, Marsh Jr J, Rajendran K. et al. Improved coronary calcification quantification using photon-counting-detector CT: an ex vivo study in cadaveric specimens. Eur Radiol 2021; 31: 6621-6630
  • 64 Euler A, Higashigaito K, Mergen V. et al. High-Pitch Photon-Counting Detector Computed Tomography Angiography of the Aorta: Intraindividual Comparison to Energy-Integrating Detector Computed Tomography at Equal Radiation Dose. Invest Radiol 2022; 57 (02) 115-121
  • 65 Peper J, Becker LM, van den Berg H. et al. Diagnostic Performance of CCTA and CT-FFR for the Detection of CAD in TAVR Work-Up. JACC Cardiovasc Interv 2022; 15 (11) 1140-1149