CC BY 4.0 · Synthesis 2023; 55(09): 1375-1384
DOI: 10.1055/a-1997-0939
special topic
Bürgenstock Special Section 2022 – Future Stars in Organic Chemistry

Samarium and Ytterbium in Organic Electrosynthesis

Johannes L. Röckl
,
Financial support from Vetenskapsrådet (Swedish Research Council) (Grant no. 2021-05551), Svenska Forskningsrådet Formas (Grant no. 2021-00678), Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research) (Grant no. FFL21-0005), Stiftelsen Olle Engkvist­ Byggmästare, Magnus Bergvalls Stiftelse, Stiftelsen Lars Hiertas­ Minne, and Kungliga Tekniska Högskolan (KTH Royal Institute of Technology) is gratefully acknowledged.


Abstract

Low-valent lanthanide catalysts and reagents are well-established as versatile and tunable mediators for a variety of synthetic transformations. Despite the contemporary interest in electricity as a sustainable alternative to stoichiometric redox reagents, electrochemical (re)generation of such low-valent metal complexes in a synthetic setting is surprisingly limited. With focus on samarium and ytterbium, this review presents a comprehensive overview of electroreductive-mediated transformations with the hope of inspiring further work in this very useful field of research.

1 Introduction

2 Compounds Containing Carbon–Oxygen Bonds

2.1 Ethers

2.2 Aldehydes and Ketones

2.3 Esters and Phthalimides

3 Compounds Containing Nitrogen–Oxygen Bonds

4 Compounds Containing Carbon–Halide Bonds

5 Conclusions



Publikationsverlauf

Eingereicht: 30. November 2022

Angenommen nach Revision: 13. Dezember 2022

Accepted Manuscript online:
13. Dezember 2022

Artikel online veröffentlicht:
27. März 2023

© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tesfaye F, Peng H, Zhang M. JOM 2021; 73: 16
  • 2 Lacerda S, Tóth É. ChemMedChem 2017; 12: 883
  • 3 Bousrez G, Jaroschik F. Eur. J. Org. Chem. 2022; e202200202
  • 4 Szostak M, Procter DJ. Angew. Chem. Int. Ed. 2012; 51: 9238
  • 5 Qiao Y, Schelter EJ. Acc. Chem. Res. 2018; 51: 2926
    • 6a Edmonds DJ, Johnston D, Procter DJ. Chem. Rev. 2004; 104: 3371
    • 6b Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 6c Heravi MM, Nazari A. RSC Adv. 2022; 12: 9944
    • 6d Szostak M, Fazakerley NJ, Parmar D, Procter DJ. Chem. Rev. 2014; 114: 5959
    • 7a Kobayashi S, Hachiya I. J. Org. Chem. 1994; 59: 3590
    • 7b Kobayashi S. Synlett 1994; 689
    • 7c Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227
    • 7d Kobayashi S, Ogawa C. Chem. Eur. J. 2006; 12: 5954
    • 8a Shabangi M, Flowers RA. Tetrahedron Lett. 1997; 38: 1137
    • 8b Szostak M, Spain M, Procter DJ. J. Org. Chem. 2014; 79: 2522
    • 8c Dahlén A, Hilmersson G, Knettle BW, Flowers RA. J. Org. Chem. 2003; 68: 4870
  • 9 Enemærke RJ, Daasbjerg K, Skrydstrup T. Chem. Commun. 1999; 4: 343
    • 10a Rabockai T. J. Electroanal. Chem. 1977; 76: 83
    • 10b Steeman E, Temmerman E, Verbeek F. J. Electroanal. Chem. 1978; 89: 97
    • 10c Steeman E, Temmerman E, Verbeek F. J. Electroanal. Chem. 1978; 89: 113
    • 10d Bulhoes LO. D, Rabockai T. Electrochim. Acta 1982; 27: 1071
    • 10e Yamana H, Mitsugashira T, Shiokawa Y, Suzuki S. Bull. Chem. Soc. Jpn. 1982; 55: 2615
    • 10f Bradley DC, Ahmed M. Polyhedron 1983; 2: 87
    • 10g Bond AM, Deacon GB, Newnham RH. Organometallics 1986; 5: 2312
    • 10h Korshunov AV, Kovaleva SV, Abramova PV, Gorlushko DA. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2019; 330: 161
    • 11a Gilbert B, Demarteau V, Duyckaerts G. J. Electroanal. Chem. 1978; 89: 123
    • 11b Musikas C, Haire RG, Peterson JR. J. Inorg. Nucl. Chem. 1981; 43: 2935
    • 11c Schoebrechts JP, Gilbert BP, Duyckaerts G. J. Electroanal. Chem. 1983; 145: 127
    • 11d Varlashkin PG, Peterson JR. J. Less-Common Met. 1983; 94: 333
    • 11e Bratsch SG, Lagowski JJ. J. Phys. Chem. 1985; 89: 3317
    • 11f Cordoba G, Caravaca C. J. Electroanal. Chem. 2004; 572: 145
    • 11g Starynowicz P. Dalton Trans. 2004; 5: 825
    • 11h Castrillejo Y, Fernandez P, Medina J, Hernandez P, Barrado E. Electrochim. Acta 2011; 56: 8638
    • 11i Bae SE, Kim DH, Lee NR, Park TH, Kim JY. J. Electrochem. Soc. 2016; 163: H115
    • 11j Bae SE, Jung TS, Cho YH, Kim JY, Kwak K, Park TH. Inorg. Chem. 2018; 57: 8299
    • 11k Yoon D, Pormatikul J, Shaltry M, Phongikaroon S, Allahar K. J. Radioanal. Nucl. Chem. 2019; 322: 1031
    • 11l Chen J, Zhong Y, Liu Y, Zhang L, Li M, Han W, Chai Z, Shi W. Chem. Eur. J. 2022; 28: e202200443
    • 12a Schäfer HJ. C. R. Chim. 2011; 14: 745
    • 12b Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 12c Cembellín S, Batanero B. Chem. Rec. 2021; 21: 2453
    • 13a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 13b Kawamata Y, Baran PS. Joule 2020; 4: 701
  • 14 Espanet B, Duñach E, Périchon J. Tetrahedron Lett. 1992; 33: 2485
  • 15 Léonard E, Duñach E, Périchon J. J. Chem. Soc., Chem. Commun. 1989; 5: 276
  • 16 Sahloul K, Sun LH, Requet A, Chahine Y, Mellah M. Chem. Eur. J. 2012; 18: 11205
  • 17 Sun LH, Sahloul K, Mellah M. ACS Catal. 2013; 3: 2568
  • 18 Arashiba K, Kanega R, Himeda Y, Nishibayashi Y. Chem. Lett. 2020; 49: 1171
  • 19 Parrish JD, Little RD. Tetrahedron Lett. 2001; 42: 7767
  • 20 Frontana-Uribe BA, Little RD. Electrochim. Acta 2005; 50: 1383
  • 21 Andreu R, Pletcher D. Electrochim. Acta 2003; 48: 1065
  • 22 Yee R, Mallory J, Parrish JD, Carroll GL, Little RD. J. Electroanal. Chem. 2006; 593: 69
  • 23 Hebri H, Duñach E, Heintz M, Troupel M, Périchon J. Synlett 1991; 901
  • 24 Villo P, Shatskiy A, Kärkäs MD, Lundberg H. Angew. Chem. Int. Ed. 2022; e202211952
  • 25 Hebri H, Duñach E, Périchon J. Synlett 1992; 293
  • 26 Kashimura S, Yamashita H, Murai Y, Kera Y, Yamashita N, Murase H, Ishifune M. Electrochim. Acta 2002; 48: 7
  • 27 Zhang YF, Mellah M. Org. Chem. Front. 2022; 9: 1308
  • 28 Kise N, Sakurai T. Tetrahedron Lett. 2010; 51: 70
    • 29a Wirtanen T, Rodrigo E, Waldvogel SR. Adv. Synth. Catal. 2020; 362: 2088
    • 29b Stergiou AD, Symes MD. Cell Rep. Phys. Sci. 2022; 3: 100914
    • 30a Won S, Kim W, Kim H. Bull. Korean Chem. Soc. 2006; 27: 195
    • 30b Chang L, Li J, Wu N, Cheng X. Org. Biomol. Chem. 2021; 19: 2468
  • 31 Zhang YF, Mellah M. ACS Catal. 2017; 7: 8480
    • 32a Alonso F, Beletskaya IP, Yus M. Chem. Rev. 2002; 102: 4009
    • 32b Everson DA, Weix DJ. J. Org. Chem. 2014; 79: 4793
    • 32c Goldfogel MJ, Huang L, Weix DJ. Cross-Electrophile Coupling: Principles and New Reactions. In Nickel Catalysis in Organic Synthesis: Methods and Reactions. Ogoshi S. Wiley-VCH; Weinheim: 2020: 183-222
    • 32d Shatskiy A, Lundberg H, Kärkäs MD. ChemElectroChem 2019; 6: 4067
    • 32e Liu J, Lu L, Wood D, Lin S. ACS Cent. Sci. 2020; 6: 1317
  • 33 Sun LH, Mellah M. Organometallics 2014; 33: 4625
  • 34 Hebri H, Duñach E, Périchon J. Synth. Commun. 1991; 21: 2377
  • 35 Röckl JL, Robertson EL, Lundberg H. Org. Biomol. Chem. 2022; 20: 6707
  • 36 Hebri H, Duñach E, Périchon J. J. Chem. Soc., Chem. Commun. 1993; 499
  • 37 RenĆsuk, Hua Z, Abdou M, Kratky C. Tetrahedron 1991; 47: 7037
  • 38 Hebri H, Duñach E, Périchon J. Tetrahedron Lett. 1993; 34: 1475
  • 39 Bazzi S, Le Duc G, Schulz E, Gosmini C, Mellah M. Org. Biomol. Chem. 2019; 17: 8546
  • 40 Bazzi S, Schulz E, Mellah M. Org. Lett. 2019; 21: 10033
    • 41a Nomoto A, Kojo Y, Shiino G, Tomisaka Y, Mitani I, Tatsumi M, Ogawa A. Tetrahedron Lett. 2010; 51: 6580
    • 41b Castro L, Labouille S, Kindra DR, Ziller JW, Nief F, Evans WJ, Maron L. Chem. Eur. J. 2012; 18: 7886
    • 41c Willauer AR, Toniolo D, Fadaei-Tirani F, Yang Y, Laurent M, Mazzanti M. Dalton Trans. 2019; 48: 6100
    • 42a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 42b Gandeepan P, Finger LH, Meyer TH, Ackermann L. Chem. Soc. Rev. 2020; 49: 4254
    • 42c Little RD. J. Org. Chem. 2020; 85: 13375
    • 42d Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
    • 42e Ma C, Fang P, Liu Z.-R, Xu S.-S, Xu K, Cheng X, Lei A, Xu H.-C, Zeng C, Mei T.-S. Sci. Bull. 2021; 66: 2412
    • 42f Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Chem. Rev. 2022; 122: 3180