Synlett 2023; 34(08): 943-947
DOI: 10.1055/a-1996-3244
letter

Palladium-Catalyzed Carbonyl-Retention Suzuki–Miyaura Coupling between N-Hydroxybenzotriazole Esters and Boronic Acids

Shangzhang Li
,
Jin Bai
,
Riqian Zhu
,
Wanfang Li
We are grateful for the financial support provided by the National Natural Science Foundation of China (21901163) and Shanghai Municipal Education Commission (QD2019024).


Abstract

We have developed a palladium-catalyzed C–O bond activation of N-hydroxybenzotriazole esters, which represent a new type of electrophilic partner for Suzuki–Miyaura cross-coupling reactions to make various ketones. This reaction employed the cheap and commercially available PdCl2(MeCN)2/PCy3 as the catalyst and proceeded at 80 °C.

Supporting Information



Publikationsverlauf

Eingereicht: 15. November 2022

Angenommen nach Revision: 12. Dezember 2022

Accepted Manuscript online:
12. Dezember 2022

Artikel online veröffentlicht:
13. Januar 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 1b Lee JC. H, Hall DG. State-of-the-Art in Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Electrophiles. In Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014: 65
    • 1c Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
    • 1d Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. Polyhedron 2022; 227: 116124
    • 2a Bumagin NA, Korolev DN. Tetrahedron Lett. 1999; 40: 3057
    • 2b Rafiee F, Hajipour AR. Appl. Organomet. Chem. 2015; 29: 181
    • 2c Forbes AM, Meier GP, Jones-Mensah E, Magolan J. Eur. J. Org. Chem. 2016; 2983
    • 2d Ogiwara Y, Sakino D, Sakurai Y, Sakai N. Eur. J. Org. Chem. 2017; 4324
    • 3a Gooßen LJ, Ghosh K. Angew. Chem. Int. Ed. 2001; 40: 3458
    • 3b Ryuki K, Hirohisa N, Isao S, Akio Y. Chem. Lett. 2001; 30: 1242
    • 3c Goossen LJ, Koley D, Hermann HL, Thiel W. J. Am. Chem. Soc. 2005; 127: 11102
    • 3d Xin B, Zhang Y, Cheng K. J. Org. Chem. 2006; 71: 5725
    • 3e Xin B.-W. Synth. Commun. 2008; 38: 2826
    • 3f Yu A, Shen L, Cui X, Peng D, Wu Y. Tetrahedron 2012; 68: 2283
    • 3g Chen Q, Fan X.-H, Zhang L.-P, Yang L.-M. RSC Adv. 2014; 4: 53885
    • 3h Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2021; 11: 3189
    • 4a Meng G, Szostak M. Org. Lett. 2015; 17: 4364
    • 4b Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
    • 4c Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
    • 4d Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
    • 4e Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
    • 4f Liu C, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2017; 19: 1434
    • 4g Nattmann L, Saeb R, Nöthling N, Cornella J. Nat. Catal. 2020; 3: 6
    • 5a Lim K.-C, Hong Y.-T, Kim SJ. S. Synlett 2006; 1851
    • 5b Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
    • 5c Shi S, Lei P, Szostak MJ. O. Organometallics 2017; 36: 3784
    • 5d Dardir AH, Melvin PR, Davis RM, Hazari N, Mohadjer Beromi M. J. Org. Chem. 2018; 83: 469
    • 5e Li G, Shi S, Lei P, Szostak M. Adv. Synth. Catal. 2018; 360: 1538
    • 5f Ma H, Bai C, Bao Y.-S. RSC Adv. 2019; 9: 17266
  • 6 Buchspies J, Szostak M. Catalysts 2019; 9: 53
  • 7 Kakino R, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2001; 74: 371
  • 8 Tatamidani H, Kakiuchi F, Chatani N. Org. Lett. 2004; 6: 3597
  • 9 Tatamidani H, Yokota K, Kakiuchi F, Chatani N. J. Org. Chem. 2004; 69: 5615
  • 10 Buchspies JJ, Pyle D, He H, Szostak M. Molecules 2018; 23: 3134
  • 11 Gooßen LJ, Ghosh K. Chem. Commun. 2001; 2084
  • 12 Gao F, Feng H, Sun ZJ. T. L. Tetrahedron Lett. 2014; 55: 6451
    • 13a Monbaliu J.-CM. The Chemistry of Benzotriazole Derivatives, Vol. 43. Springer; Basel: 2016
    • 13b Gonnet L, Tintillier T, Venturini N, Konnert L, Hernandez J.-F, Lamaty F, Laconde G, Martinez J, Colacino E. ACS Sustainable Chem. Eng. 2017; 5: 2936
    • 14a Li J, Zheng Y, Huang M, Li W. Org. Lett. 2020; 22: 5020
    • 14b Qu E, Li S, Bai J, Zheng Y, Li W. Org. Lett. 2022; 24: 58
  • 15 Kim S, Chang H, Kim WJ. J. Org. Chem. 1985; 50: 1751
  • 16 Mondal M, Begum T, Bora U. Org. Chem. Front. 2017; 4: 1430
  • 17 General Procedure for the Pd-Catalyzed Suzuki–Miyaura Coupling between AcOBt and Boronic Acid An oven-dried Schlenk tube was charged with a magnetic stir bar, PdCl2(MeCN)2 (2.59 mg, 0.02 mmol), PCy3 (5.61 mg, 0.04 mmol), O-acyl N-hydroxybenzotriazole (0.2 mmol), boronic acid (1.5 equiv), and K2CO3 (2.0 equiv) under air. Then the Schlenk tube was capped with a rubber septum and connected to a Schlenk line. The Schlenk tube was evacuated and back filled with N2 for three times before dioxane (2 mL) was added through a syringe. The perimeter of the septum was carefully sealed with parafilm. Next, the mixture was allowed for stirring at 80 °C in a metal sand bath for 12 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (5 mL), and the solvent was removed by a rotary evaporator. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate). Naphthalen-2-yl(phenyl)methanone (3l) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 200/1) as a white solid (30.4 mg, 66%), mp 82–84 °C. 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 1.3 Hz, 1 H), 7.98–7.84 (m, 6 H), 7.65–7.60 (m, 2 H), 7.59–7.49 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 196.7, 137.9, 135.2, 134.8, 132.4, 132.2, 131.9, 130.1, 129.4, 128.3, 128.3, 128.3, 127.8, 126.8, 125.8. Furan-2-yl(phenyl)methanone (3m) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 300/1) as a white solid (14.9 mg, 43%), mp 43–45 °C. 1H NMR (400 MHz, CDCl3): δ = 8.02–7.93 (m, 2 H), 7.71 (d, J = 1.6 Hz, 1 H), 7.64–7.55 (m, 1 H), 7.49 (dd, J = 8.4, 7.0 Hz, 2 H), 7.23 (d, J = 3.6 Hz, 1 H), 6.59 (dd, J = 3.6, 1.7 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 182.5, 152.3, 147.1, 137.2, 132.6, 129.3, 128.4, 120.5, 112.2. Phenyl(thiophen-2-yl)methanone (3n) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 300/1) as a white solid (18.9 mg, 50%), mp 57–58 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91–7.81 (m, 2 H), 7.72 (dd, J = 5.0, 1.2 Hz, 1 H), 7.65 (dd, J = 3.8, 1.2 Hz, 1 H), 7.62–7.56 (m, 1 H), 7.53–7.45 (m, 2 H), 7.16 (dd, J = 5.0, 3.8 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 188.2, 143.6, 138.1, 134.8, 134.2, 132.2, 129.1, 128.4, 127.9.
  • 18 Mandai T, Matsumoto T, Tsuji J, Saito S. Tetrahedron Lett. 1993; 34: 2513