Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2023; 34(08): 943-947
DOI: 10.1055/a-1996-3244
DOI: 10.1055/a-1996-3244
letter
Palladium-Catalyzed Carbonyl-Retention Suzuki–Miyaura Coupling between N-Hydroxybenzotriazole Esters and Boronic Acids
We are grateful for the financial support provided by the National Natural Science Foundation of China (21901163) and Shanghai Municipal Education Commission (QD2019024).
Abstract
We have developed a palladium-catalyzed C–O bond activation of N-hydroxybenzotriazole esters, which represent a new type of electrophilic partner for Suzuki–Miyaura cross-coupling reactions to make various ketones. This reaction employed the cheap and commercially available PdCl2(MeCN)2/PCy3 as the catalyst and proceeded at 80 °C.
Key words
palladium catalysis - Suzuki–Miyaura coupling - C–O bond activation - activated esters - ketone synthesis - N-hydroxybenzotriazoleSupporting Information
- Supporting information for this article is
available online at https://doi.org/10.1055/a-1196-3244.
- Supporting Information
Publication History
Received: 15 November 2022
Accepted after revision: 12 December 2022
Accepted Manuscript online:
12 December 2022
Article published online:
13 January 2023
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
- 1b Lee JC. H, Hall DG. State-of-the-Art in Metal-Catalyzed Cross-Coupling Reactions of Organoboron Compounds with Organic Electrophiles. In Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014: 65
- 1c Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
- 1d Farhang M, Akbarzadeh AR, Rabbani M, Ghadiri AM. Polyhedron 2022; 227: 116124
- 2a Bumagin NA, Korolev DN. Tetrahedron Lett. 1999; 40: 3057
- 2b Rafiee F, Hajipour AR. Appl. Organomet. Chem. 2015; 29: 181
- 2c Forbes AM, Meier GP, Jones-Mensah E, Magolan J. Eur. J. Org. Chem. 2016; 2983
- 2d Ogiwara Y, Sakino D, Sakurai Y, Sakai N. Eur. J. Org. Chem. 2017; 4324
- 3a Gooßen LJ, Ghosh K. Angew. Chem. Int. Ed. 2001; 40: 3458
- 3b Ryuki K, Hirohisa N, Isao S, Akio Y. Chem. Lett. 2001; 30: 1242
- 3c Goossen LJ, Koley D, Hermann HL, Thiel W. J. Am. Chem. Soc. 2005; 127: 11102
- 3d Xin B, Zhang Y, Cheng K. J. Org. Chem. 2006; 71: 5725
- 3e Xin B.-W. Synth. Commun. 2008; 38: 2826
- 3f Yu A, Shen L, Cui X, Peng D, Wu Y. Tetrahedron 2012; 68: 2283
- 3g Chen Q, Fan X.-H, Zhang L.-P, Yang L.-M. RSC Adv. 2014; 4: 53885
- 3h Yang S, Zhou T, Poater A, Cavallo L, Nolan SP, Szostak M. Catal. Sci. Technol. 2021; 11: 3189
- 4a Meng G, Szostak M. Org. Lett. 2015; 17: 4364
- 4b Liu C, Meng G, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2016; 18: 4194
- 4c Meng G, Shi S, Szostak M. ACS Catal. 2016; 6: 7335
- 4d Weires NA, Baker EL, Garg NK. Nat. Chem. 2016; 8: 75
- 4e Lei P, Meng G, Shi S, Ling Y, An J, Szostak R, Szostak M. Chem. Sci. 2017; 8: 6525
- 4f Liu C, Liu Y, Liu R, Lalancette R, Szostak R, Szostak M. Org. Lett. 2017; 19: 1434
- 4g Nattmann L, Saeb R, Nöthling N, Cornella J. Nat. Catal. 2020; 3: 6
- 5a Lim K.-C, Hong Y.-T, Kim SJ. S. Synlett 2006; 1851
- 5b Ben Halima T, Zhang W, Yalaoui I, Hong X, Yang Y.-F, Houk KN, Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
- 5c Shi S, Lei P, Szostak MJ. O. Organometallics 2017; 36: 3784
- 5d Dardir AH, Melvin PR, Davis RM, Hazari N, Mohadjer Beromi M. J. Org. Chem. 2018; 83: 469
- 5e Li G, Shi S, Lei P, Szostak M. Adv. Synth. Catal. 2018; 360: 1538
- 5f Ma H, Bai C, Bao Y.-S. RSC Adv. 2019; 9: 17266
- 6 Buchspies J, Szostak M. Catalysts 2019; 9: 53
- 7 Kakino R, Shimizu I, Yamamoto A. Bull. Chem. Soc. Jpn. 2001; 74: 371
- 8 Tatamidani H, Kakiuchi F, Chatani N. Org. Lett. 2004; 6: 3597
- 9 Tatamidani H, Yokota K, Kakiuchi F, Chatani N. J. Org. Chem. 2004; 69: 5615
- 10 Buchspies JJ, Pyle D, He H, Szostak M. Molecules 2018; 23: 3134
- 11 Gooßen LJ, Ghosh K. Chem. Commun. 2001; 2084
- 12 Gao F, Feng H, Sun ZJ. T. L. Tetrahedron Lett. 2014; 55: 6451
- 13a Monbaliu J.-CM. The Chemistry of Benzotriazole Derivatives, Vol. 43. Springer; Basel: 2016
- 13b Gonnet L, Tintillier T, Venturini N, Konnert L, Hernandez J.-F, Lamaty F, Laconde G, Martinez J, Colacino E. ACS Sustainable Chem. Eng. 2017; 5: 2936
- 14a Li J, Zheng Y, Huang M, Li W. Org. Lett. 2020; 22: 5020
- 14b Qu E, Li S, Bai J, Zheng Y, Li W. Org. Lett. 2022; 24: 58
- 15 Kim S, Chang H, Kim WJ. J. Org. Chem. 1985; 50: 1751
- 16 Mondal M, Begum T, Bora U. Org. Chem. Front. 2017; 4: 1430
- 17 General Procedure for the Pd-Catalyzed Suzuki–Miyaura Coupling between AcOBt and Boronic Acid An oven-dried Schlenk tube was charged with a magnetic stir bar, PdCl2(MeCN)2 (2.59 mg, 0.02 mmol), PCy3 (5.61 mg, 0.04 mmol), O-acyl N-hydroxybenzotriazole (0.2 mmol), boronic acid (1.5 equiv), and K2CO3 (2.0 equiv) under air. Then the Schlenk tube was capped with a rubber septum and connected to a Schlenk line. The Schlenk tube was evacuated and back filled with N2 for three times before dioxane (2 mL) was added through a syringe. The perimeter of the septum was carefully sealed with parafilm. Next, the mixture was allowed for stirring at 80 °C in a metal sand bath for 12 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate (5 mL), and the solvent was removed by a rotary evaporator. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate). Naphthalen-2-yl(phenyl)methanone (3l) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 200/1) as a white solid (30.4 mg, 66%), mp 82–84 °C. 1H NMR (400 MHz, CDCl3): δ = 8.27 (d, J = 1.3 Hz, 1 H), 7.98–7.84 (m, 6 H), 7.65–7.60 (m, 2 H), 7.59–7.49 (m, 3 H). 13C NMR (101 MHz, CDCl3): δ = 196.7, 137.9, 135.2, 134.8, 132.4, 132.2, 131.9, 130.1, 129.4, 128.3, 128.3, 128.3, 127.8, 126.8, 125.8. Furan-2-yl(phenyl)methanone (3m) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 300/1) as a white solid (14.9 mg, 43%), mp 43–45 °C. 1H NMR (400 MHz, CDCl3): δ = 8.02–7.93 (m, 2 H), 7.71 (d, J = 1.6 Hz, 1 H), 7.64–7.55 (m, 1 H), 7.49 (dd, J = 8.4, 7.0 Hz, 2 H), 7.23 (d, J = 3.6 Hz, 1 H), 6.59 (dd, J = 3.6, 1.7 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 182.5, 152.3, 147.1, 137.2, 132.6, 129.3, 128.4, 120.5, 112.2. Phenyl(thiophen-2-yl)methanone (3n) The product was purified by flash column chromatography (petroleum ether/ethyl acetate = 300/1) as a white solid (18.9 mg, 50%), mp 57–58 °C. 1H NMR (400 MHz, CDCl3): δ = 7.91–7.81 (m, 2 H), 7.72 (dd, J = 5.0, 1.2 Hz, 1 H), 7.65 (dd, J = 3.8, 1.2 Hz, 1 H), 7.62–7.56 (m, 1 H), 7.53–7.45 (m, 2 H), 7.16 (dd, J = 5.0, 3.8 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 188.2, 143.6, 138.1, 134.8, 134.2, 132.2, 129.1, 128.4, 127.9.
- 18 Mandai T, Matsumoto T, Tsuji J, Saito S. Tetrahedron Lett. 1993; 34: 2513