1
Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie Institute
für klinische Hirnforschung, Universität
Tübingen
› InstitutsangabenFunding
Dieser Beitrag wurde unterstützt von der Deutschen Forschungsgemeinschaft
(DFG, FOR-2715/2, Le1030/15-2, Le1030/23-1), dem
Bundesministerium für Bildung und Forschung (BMBF, Treat-ION, 01GM2210A) und
der Else-Kröner-Fresenius-Stiftung (Forschungskolleg Precise.net).
Seit über 10 Jahren wird an Gentherapien für die schwersten
Formen von Epilepsie geforscht, die bis jetzt therapieresistent sind. Nun
ergeben sich für fokale pharmakoresistente Epilepsien und für
das Dravet Syndrom Gentherapieansätze in ersten klinischen Studien. In
diesem Artikel beschreiben wir die Funktionsweise und Ziele dieser und weiterer
Gentherapien.
Abstract
For more than 10 years, research has been conducted on gene therapies for the
most severe forms of epilepsy, which until now have proven resistant to
treatment. First gene therapies are now in clinical trials for pharmacoresistant
focal epilepsies and Dravet syndrome. In this article, we describe how these and
many more gene therapies work and what they target.
Georg Thieme Verlag Rüdigerstraße 14, 70469 Stuttgart,
Germany
Literatur
1
Chu Y,
Bartus RT,
Manfredsson FP.
et al. Long-term post-mortem studies following neurturin gene therapy in patients with
advanced Parkinson’s disease. Brain: a journal of neurology 2020; 143: 960-975
2
Bessis N,
GarciaCozar FJ,
Boissier MC.
Immune responses to gene therapy vectors: influence on vector function and
effector mechanisms. Gene Ther 2004; 11: S10-S17
3
Vezzani A,
Sperk G,
Colmers WF.
Neuropeptide Y: emerging evidence for a functional role in seizure
modulation. Trends in Neurosciences 1999; 22: 25-30
4
de Lanerolle NC,
Kim JH,
Robbins RJ.
et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989; 495: 387-395
5
Greber S,
Schwarzer C,
Sperk G.
Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2
receptors in rat hippocampal slices in vitro. British journal of pharmacology 1994; 113: 737-740
6
Richichi C,
Lin E-JD,
Stefanin D.
et al. Anticonvulsant and Antiepileptogenic Effects Mediated by Adeno-Associated Virus
Vector Neuropeptide Y Expression in the Rat Hippocampus. The Journal of Neuroscience 2004; 24: 3051-3059
7
Szczygieł JA,
Danielsen KI,
Melin E.
et al. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future
Treatment of Epilepsy: Preclinical Data in Rats. Frontiers in Molecular Neuroscience 2020; 13
8
Agostinho AS,
Mietzsch M,
Zangrandi L.
et al. Dynorphin-based “release on demand” gene therapy for
drug-resistant temporal lobe epilepsy. EMBO molecular medicine 2019; 11: e9963
9
Lin EJ,
Richichi C,
Young D.
et al. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses
seizure development. The European journal of neuroscience 2003; 18: 2087-2092
10
Kanter-Schlifke I,
Georgievska B,
Kirik D.
et al. Seizure Suppression by GDNF Gene Therapy in Animal Models of Epilepsy. Molecular Therapy 2007; 15: 1106-1113
11
Lee AL,
Dumas TC,
Tarapore PE.
et al. Potassium channel gene therapy can prevent neuron death resulting from necrotic
and apoptotic insults. Journal of neurochemistry 2003; 86: 1079-1088
12
Wenzel HJ,
Vacher H,
Clark E.
et al. Structural consequences of Kcna1 gene deletion and transfer in the mouse
hippocampus. Epilepsia 2007; 48: 2023-2046
13
Snowball A,
Chabrol E,
Wykes RC.
et al. Epilepsy Gene Therapy Using an Engineered Potassium Channel. The Journal of neuroscience: the official journal of the Society for
Neuroscience 2019; 39: 3159-3169
14 Colasante G, Qiu Y, Di Berardino C et al. CRISPRa-mediated Kcna1 upregulation
decreases neuronal excitability and suppresses seizures in a rodent model of
temporal lobe epilepsy. bioRxiv 2018. 10.1101/431015: 431015.
10.1101/431015
18
Krook-Magnuson E,
Armstrong C,
Oijala M.
et al. On-demand optogenetic control of spontaneous seizures in temporal lobe
epilepsy. Nature communications 2013; 4: 1376
20
Auffenberg E,
Hedrich UB,
Barbieri R.
et al. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a
migraine model. The Journal of clinical investigation 2021; 131
21
Abdelnour E,
Gallentine W,
McDonald M.
et al. Does age affect response to quinidine in patients with KCNT1 mutations? Report
of three new cases and review of the literature. Seizure 2018; 55: 1-3
22
Hedrich UBS,
Lauxmann S,
Wolff M.
et al. 4-Aminopyridine is a promising treatment option for patients with
gain-of-function KCNA2-encephalopathy. Sci Transl Med 2021; 13: 609
23
Boßelmann CM,
Hedrich UBS,
Müller P.
et al. Predicting the functional effects of voltage-gated potassium channel missense
variants with multi-task learning. EBioMedicine 2022; 81: 104115
24
Li M,
Jancovski N,
Jafar-Nejad P.
et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an
SCN2A gain-of-function epilepsy model. The Journal of clinical investigation 2021; 131
25
Lenk GM,
Jafar-Nejad P,
Hill SF.
et al. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A
Encephalopathy and Dravet Syndrome. Annals of neurology 2020; 87: 339-346
26
Matos L,
Duarte AJ,
Ribeiro D.
et al. Correction of a Splicing Mutation Affecting an Unverricht-Lundborg Disease
Patient by Antisense Therapy. Genes (Basel) 2018; 9
27
Valassina N,
Brusco S,
Salamone A.
et al. Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a
mouse model of Dravet syndrome. Nature communications 2022; 13: 161
28
Tanenhaus A,
Stowe T,
Young A.
et al. Cell-Selective Adeno-Associated Virus-Mediated SCN1A Gene Regulation Therapy
Rescues Mortality and Seizure Phenotypes in a Dravet Syndrome Mouse Model and Is
Well Tolerated in Nonhuman Primates. Hum Gene Ther 2022; 33: 579-597
29
Gholizadeh S,
Arsenault J,
Xuan IC.
et al. Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene
delivery in fragile X mice. Neuropsychopharmacology: official publication of the American College
of Neuropsychopharmacology 2014; 39: 3100-3111
30
Luoni M,
Giannelli S,
Indrigo MT.
et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral
and molecular pathological defects in mouse models of Rett syndrome. eLife 2020; 9: e52629
31
Turner TJ,
Zourray C,
Schorge S.
et al. Recent advances in gene therapy for neurodevelopmental disorders with
epilepsy. Journal of neurochemistry 2021; 157: 229-262