Fortschr Neurol Psychiatr 2023; 91(04): 135-140
DOI: 10.1055/a-1995-5405
Übersichtsarbeit

Gentherapien für Epilepsie: Klinische Studien sind auf dem Weg

Gene Therapy for Epilepsy: Clinical Studies are on the Road
1   Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie Institute für klinische Hirnforschung, Universität Tübingen
,
1   Abteilung Neurologie mit Schwerpunkt Epileptologie, Hertie Institute für klinische Hirnforschung, Universität Tübingen
› Author Affiliations
Funding Dieser Beitrag wurde unterstützt von der Deutschen Forschungsgemeinschaft (DFG, FOR-2715/2, Le1030/15-2, Le1030/23-1), dem Bundesministerium für Bildung und Forschung (BMBF, Treat-ION, 01GM2210A) und der Else-Kröner-Fresenius-Stiftung (Forschungskolleg Precise.net).

Zusammenfassung

Seit über 10 Jahren wird an Gentherapien für die schwersten Formen von Epilepsie geforscht, die bis jetzt therapieresistent sind. Nun ergeben sich für fokale pharmakoresistente Epilepsien und für das Dravet Syndrom Gentherapieansätze in ersten klinischen Studien. In diesem Artikel beschreiben wir die Funktionsweise und Ziele dieser und weiterer Gentherapien.

Abstract

For more than 10 years, research has been conducted on gene therapies for the most severe forms of epilepsy, which until now have proven resistant to treatment. First gene therapies are now in clinical trials for pharmacoresistant focal epilepsies and Dravet syndrome. In this article, we describe how these and many more gene therapies work and what they target.



Publication History

Received: 05 October 2022

Accepted: 27 November 2022

Article published online:
30 January 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Chu Y, Bartus RT, Manfredsson FP. et al. Long-term post-mortem studies following neurturin gene therapy in patients with advanced Parkinson’s disease. Brain: a journal of neurology 2020; 143: 960-975
  • 2 Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 2004; 11: S10-S17
  • 3 Vezzani A, Sperk G, Colmers WF. Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends in Neurosciences 1999; 22: 25-30
  • 4 de Lanerolle NC, Kim JH, Robbins RJ. et al. Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 1989; 495: 387-395
  • 5 Greber S, Schwarzer C, Sperk G. Neuropeptide Y inhibits potassium-stimulated glutamate release through Y2 receptors in rat hippocampal slices in vitro. British journal of pharmacology 1994; 113: 737-740
  • 6 Richichi C, Lin E-JD, Stefanin D. et al. Anticonvulsant and Antiepileptogenic Effects Mediated by Adeno-Associated Virus Vector Neuropeptide Y Expression in the Rat Hippocampus. The Journal of Neuroscience 2004; 24: 3051-3059
  • 7 Szczygieł JA, Danielsen KI, Melin E. et al. Gene Therapy Vector Encoding Neuropeptide Y and Its Receptor Y2 for Future Treatment of Epilepsy: Preclinical Data in Rats. Frontiers in Molecular Neuroscience 2020; 13
  • 8 Agostinho AS, Mietzsch M, Zangrandi L. et al. Dynorphin-based “release on demand” gene therapy for drug-resistant temporal lobe epilepsy. EMBO molecular medicine 2019; 11: e9963
  • 9 Lin EJ, Richichi C, Young D. et al. Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. The European journal of neuroscience 2003; 18: 2087-2092
  • 10 Kanter-Schlifke I, Georgievska B, Kirik D. et al. Seizure Suppression by GDNF Gene Therapy in Animal Models of Epilepsy. Molecular Therapy 2007; 15: 1106-1113
  • 11 Lee AL, Dumas TC, Tarapore PE. et al. Potassium channel gene therapy can prevent neuron death resulting from necrotic and apoptotic insults. Journal of neurochemistry 2003; 86: 1079-1088
  • 12 Wenzel HJ, Vacher H, Clark E. et al. Structural consequences of Kcna1 gene deletion and transfer in the mouse hippocampus. Epilepsia 2007; 48: 2023-2046
  • 13 Snowball A, Chabrol E, Wykes RC. et al. Epilepsy Gene Therapy Using an Engineered Potassium Channel. The Journal of neuroscience: the official journal of the Society for Neuroscience 2019; 39: 3159-3169
  • 14 Colasante G, Qiu Y, Di Berardino C et al. CRISPRa-mediated Kcna1 upregulation decreases neuronal excitability and suppresses seizures in a rodent model of temporal lobe epilepsy. bioRxiv 2018. 10.1101/431015: 431015. 10.1101/431015
  • 15 Lignani G. Manipulation Of Epileptic Neuronal Activity Using Activity-Dependent Gene Therapy. In, FENS. Paris. 2022
  • 16 Kätzel D, Nicholson E, Schorge S. et al. Chemical-genetic attenuation of focal neocortical seizures. Nature communications 2014; 5: 3847
  • 17 Deisseroth K. Optogenetics. Nature Methods 2011; 8: 26-29
  • 18 Krook-Magnuson E, Armstrong C, Oijala M. et al. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature communications 2013; 4: 1376
  • 19 von Stülpnagel C, Kluger G. Genetische Epilepsien im Kindesalter. Monatsschrift Kinderheilkunde 2021; 169: 791-804
  • 20 Auffenberg E, Hedrich UB, Barbieri R. et al. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. The Journal of clinical investigation 2021; 131
  • 21 Abdelnour E, Gallentine W, McDonald M. et al. Does age affect response to quinidine in patients with KCNT1 mutations? Report of three new cases and review of the literature. Seizure 2018; 55: 1-3
  • 22 Hedrich UBS, Lauxmann S, Wolff M. et al. 4-Aminopyridine is a promising treatment option for patients with gain-of-function KCNA2-encephalopathy. Sci Transl Med 2021; 13: 609
  • 23 Boßelmann CM, Hedrich UBS, Müller P. et al. Predicting the functional effects of voltage-gated potassium channel missense variants with multi-task learning. EBioMedicine 2022; 81: 104115
  • 24 Li M, Jancovski N, Jafar-Nejad P. et al. Antisense oligonucleotide therapy reduces seizures and extends life span in an SCN2A gain-of-function epilepsy model. The Journal of clinical investigation 2021; 131
  • 25 Lenk GM, Jafar-Nejad P, Hill SF. et al. Scn8a Antisense Oligonucleotide Is Protective in Mouse Models of SCN8A Encephalopathy and Dravet Syndrome. Annals of neurology 2020; 87: 339-346
  • 26 Matos L, Duarte AJ, Ribeiro D. et al. Correction of a Splicing Mutation Affecting an Unverricht-Lundborg Disease Patient by Antisense Therapy. Genes (Basel) 2018; 9
  • 27 Valassina N, Brusco S, Salamone A. et al. Scn1a gene reactivation after symptom onset rescues pathological phenotypes in a mouse model of Dravet syndrome. Nature communications 2022; 13: 161
  • 28 Tanenhaus A, Stowe T, Young A. et al. Cell-Selective Adeno-Associated Virus-Mediated SCN1A Gene Regulation Therapy Rescues Mortality and Seizure Phenotypes in a Dravet Syndrome Mouse Model and Is Well Tolerated in Nonhuman Primates. Hum Gene Ther 2022; 33: 579-597
  • 29 Gholizadeh S, Arsenault J, Xuan IC. et al. Reduced phenotypic severity following adeno-associated virus-mediated Fmr1 gene delivery in fragile X mice. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 2014; 39: 3100-3111
  • 30 Luoni M, Giannelli S, Indrigo MT. et al. Whole brain delivery of an instability-prone Mecp2 transgene improves behavioral and molecular pathological defects in mouse models of Rett syndrome. eLife 2020; 9: e52629
  • 31 Turner TJ, Zourray C, Schorge S. et al. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. Journal of neurochemistry 2021; 157: 229-262
  • 32 Aimiuwu OV, Fowler AM, Sah M. et al. RNAi-Based Gene Therapy Rescues Developmental and Epileptic Encephalopathy in a Genetic Mouse Model. Molecular Therapy 2020; 28: 1706-1716