Synlett 2023; 34(08): 882-888
DOI: 10.1055/a-1992-6757
synpacts

Chiral Bicyclo[2.2.2]octane-Fused and Ferrocene-Derived Cyclopentadienyl Ligands for Asymmetric C–H Activation

Hao Liang
a   Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
b   Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
,
Jun Wang
a   Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
b   Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
› Institutsangaben
We thank the National Natural Science Foundation of China for financial support (21971263).


Abstract

To fulfill increasing and diverse demands of cyclopentadienyl metal complexes (CpM) catalyzed asymmetric C–H activation, innovation in developing new types of chiral Cp ligands should be important. In this context, we found the structurally rigid chiral bicyclo[2.2.2]octane-fused Cp ligands originated by Vollhardt and ­Halterman were efficient to enable highly enantioselective C–H activation of N-methoxybenzamides with quinones. Besides, we also designed and synthesized a class of ferrocene-based chiral Cp ligand featuring a loose chiral pocket, whose rhodium complexes exhibited high reactivity and reasonable enantioselectivity in an asymmetric intramolecular aryl amination of alkene.

1 Introduction

2 Chiral Cp Ligands Applied in Asymmetric C–H Activation

3 Chiral Bicyclo[2.2.2]octane-Fused Cp Ligands

4 Chiral Ferrocene-Derived Cp Ligands

5 Conclusion



Publikationsverlauf

Eingereicht: 13. November 2022

Angenommen nach Revision: 04. Dezember 2022

Accepted Manuscript online:
04. Dezember 2022

Artikel online veröffentlicht:
03. Januar 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kealy TJ, Pauson PL. Nature 1951; 168: 1039
  • 2 Halterman RL. Chem. Rev. 1992; 92: 965
    • 3a Ye B, Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 3b Newton CG, Kossler D, Cramer N. J. Am. Chem. Soc. 2016; 138: 3935
    • 3c Shaaban S, Davies C, Waldmann H. Eur. J. Org. Chem. 2020; 6512
    • 3d Mas-Rosello J, Herraiz AG, Audic B, Laverny A, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 13198
    • 3e Wang Q, Liu C.-X, Gu Q, You S.-L. Sci. Bull. 2021; 66: 210
    • 3f Davies C, Shaaban S, Waldmann H. Trends Chem. 2022; 4: 318
  • 4 Ye B, Cramer N. Science 2012; 338: 504
  • 5 Hyster TK, Knörr L, Ward TR, Rovis T. Science 2012; 338: 500
  • 6 Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
  • 7 Duchemin C, Smits G, Cramer N. Organometallics 2019; 38: 3939
  • 8 Cui WJ, Wu ZJ, Gu Q, You SL. J. Am. Chem. Soc. 2020; 142: 7379
  • 9 Zheng J, Cui WJ, Zheng C, You SL. J. Am. Chem. Soc. 2016; 138: 5242
  • 10 Wang SG, Park SH, Cramer N. Angew. Chem. Int. Ed. 2018; 57: 5459
  • 11 Jia ZJ, Merten C, Gontla R, Daniliuc CG, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2017; 56: 2429
    • 12a Trifonova EA, Ankudinov NM, Mikhaylov AA, Chusov DA, Nelyubina YV, Perekalin DS. Angew. Chem. Int. Ed. 2018; 57: 7714
    • 12b Kolos AV, Nelyubina YV, Sundararaju B, Perekalin DS. Organometallics 2021; 40: 3712
  • 13 Farr CM. B, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik M.-H, Blakey SB. J. Am. Chem. Soc. 2020; 142: 13996
  • 14 Yan X, Jiang J, Wang J. Angew. Chem. Int. Ed. 2022; 61: e202201522
    • 15a Shan G, Flegel J, Li H, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2018; 57: 14250
    • 15b Li H, Gontla R, Flegel J, Merten C, Ziegler S, Antonchick AP, Waldmann H. Angew. Chem. Int. Ed. 2019; 58: 307
    • 15c Shaaban S, Li H, Otte F, Strohmann C, Antonchick AP, Waldmann H. Org. Lett. 2020; 22: 9199
    • 15d Waldmann H, Antonchick AP, Shaaban S, Li H, Merten C. Synthesis 2021; 53: 2192
    • 15e Shaaban S, Merten C, Waldmann H. Chem. Eur. J. 2022; 28: e202103365
  • 16 Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Angew. Chem. Int. Ed. 2020; 59: 22436
  • 17 Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. Chem. Eur. J. 2020; 26: 14546
  • 18 Burgstahler AW, Boger DL, Naik NC. Tetrahedron 1976; 32: 309
    • 19a Halterman RL, Vollhardt KP. C. Tetrahedron Lett. 1986; 27: 1461
    • 19b Halterman RL, Vollhardt KP. C. Organometallics 1988; 7: 883
  • 20 McLaughlin ML, McKinney JA, Paquette LA. Tetrahedron Lett. 1986; 27: 5595
  • 21 Erker G, van der Zeijden AA. H. Angew. Chem., Int. Ed. Engl. 1990; 29: 512
  • 22 Moriarty KJ, Rogers RD, Paquette LA. Organometallics 1989; 8: 1512
  • 23 Pototskiy RA, Kolos AV, Nelyubina YV, Perekalin DS. Eur. J. Org. Chem. 2020; 6019
  • 24 Halterman RL, Vollhardt KP. C, Welker ME, Blaeser D, Boese R. J. Am. Chem. Soc. 1987; 109: 8105
  • 26 Ye B, Cramer N. J. Am. Chem. Soc. 2013; 135: 636
    • 27a Falivene L, Cao Z, Petta A, Serra L, Poater A, Oliva R, Scarano V, Cavallo L. Nat. Chem. 2019; 11: 872
    • 27b Falivene L, Credendino R, Poater A, Petta A, Serra L, Oliva R, Scarano V, Cavallo L. Organometallics 2016; 35: 2286
  • 28 Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Org. Lett. 2020; 22: 3219
  • 29 Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric Catalysis . Wiley-VCH; Weinheim: 2010
    • 30a Voituriez A, Panossian A, Fleury-Brégeot N, Retailleau P, Marinetti A. J. Am. Chem. Soc. 2008; 130: 14030
    • 30b Voituriez A, Panossian A, Fleury-Brégeot N, Retailleau P, Marinetti A. Adv. Synth. Catal. 2009; 351: 1968