Synthesis 2023; 55(09): 1451-1459
DOI: 10.1055/a-1988-5764
paper

Palladium-Catalyzed Transfer Hydrogenation and Acetylation of N-Heteroarenes with Sodium Hydride as the Reductant

Fan Luo
a   Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P. R. China
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
,
Xiaobei Chen
a   Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and State Key Laboratory of Bioengineering Reactor, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, P. R. China
,
Jing Yu
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
,
Yuejia Yin
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
,
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
,
Ying Hu
c   Department of Pharmacy, Suzhou Vocational Health College, 28 Kehua Road, Suzhou 215009, P. R. China
,
Xuejun Liu
d   Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai 201315, P. R. China
,
Xiaodong Chen
d   Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No. 555 Huanqiao Road, Pudong New Area, Shanghai 201315, P. R. China
,
Shilei Zhang
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
,
Yanwei Hu
b   Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, 199 Ren’ai Road, Suzhou, Jiangsu 215123, P. R. China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (22271206 and 22071053), Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism (Shanghai Municipal Education Commission, grant 2021 Sci & Tech 03-28), East China University of Science and Technology, the ‘111’ Project and PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu­ Higher Education Institutions).


Abstract

An efficient and convenient palladium-catalyzed reductive system by employing sodium hydride as the hydrogen donor and acetic anhydride as an activator has been developed for transfer hydrogenation and acetylation of a wide range of N-heteroarenes including quinoline, phthalazine, quinoxaline, phenazine, phenanthridine, and indole. Moreover, acridine substrates could be directly reduced without the use of acetic anhydride. This protocol provides a simple method for the preparation of various saturated N-heterocycles.

Supporting Information



Publication History

Received: 06 September 2022

Accepted after revision: 28 November 2022

Accepted Manuscript online:
28 November 2022

Article published online:
03 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
    • 1b Sridharan V, Suryavanshi PA, Menéndez JC. Chem. Rev. 2011; 111: 7157
    • 1c Scott JD, Williams RM. Chem. Rev. 2002; 102: 1669
    • 1d Katritzky R, Rachwal S, Rachwal B. Tetrahedron 1996; 52: 15031
    • 1e Zhao X.-X, Guo L, Yang C, Xia W.-J. Synthesis 2021; 53: 1341
    • 1f Lin Y, Li Z, Ma H, Wang Y, Wang X, Song S, Zhao L, Wu S, Tian S, Fu C, Luo L, Zhu F, He S, Zheng J, Zhang X. ChemMedChem 2020; 15: 1150
    • 1g Ji X, Li Z. Med. Res. Rev. 2020; 40: 1519
    • 1h Dong Y, Dong L, Chen J, Luo M, Fu X, Qiao C. Med. Chem. Res. 2018; 27: 1111
  • 2 Filho RP, de Souza Menezes CM, Pinto PL. S, Paula GA, Brandt CA, da Silveira MA. B. Bioorg. Med. Chem. 2007; 15: 1229
  • 3 Bálint J, Egri G, Fogassy E, Böcskei Z, Simon K, Gajáry A, Friesz A. Tetrahedron: Asymmetry 1999; 10: 1079
  • 4 Rakotoson JH, Fabre N, Jacquemond-Collet I, Hanned-ouche S, Fourasté I, Moulis C. Planta Med. 1998; 64: 762
  • 5 Guinó M, Phua PH, Caille JC, Hii KK. J. Org. Chem. 2007; 72: 6290
  • 6 Okano K, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2006; 128: 7136
    • 7a Muthukrishnan I, Sridharan V, Menendez JC. Chem. Rev. 2019; 119: 5057
    • 7b Bariwal J, Voskressensky LG, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3831
    • 7c Silva TS, Rodrigues JrM. T, Santos H, Zeoly LA, Almeida WP, Barcelos RC, Gomes RC, Fernandes FS, Coelho F. Tetrahedron 2019; 75: 2063
    • 8a Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 8b Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 8c He Y.-M, Song F.-T, Fan Q.-H. Top. Curr. Chem. 2013; 343: 145
    • 8d Giustra ZX, Ishibash JS. A, Liu S.-Y. Coord. Chem. Rev. 2016; 314: 134
    • 8e Yu Z.-K, Jin W.-W, Jiang Q.-B. Angew. Chem. Int. Ed. 2012; 51: 6060
    • 8f Wiesenfeldt MP, Nairoukh Z, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10460
    • 8g Glorius F. Org. Biomol. Chem. 2005; 3: 4171
    • 8h Balakrishna B, Núñez-Rico JL, Vidal-Ferran A. Eur. J. Org. Chem. 2015; 5293
    • 8i Chen Z.-P, Zhou Y.-G. Synthesis 2016; 48: 1769
  • 9 Baralt E, Smith SJ, Hurwitz J, Horvath IT, Fish RH. J. Am. Chem. Soc. 1992; 114: 5187
    • 10a Chatterjee B, Kalsi D, Kaithal A, Bordet A, Leitner W, Gunanathan C. Catal. Sci. Technol. 2020; 10: 5163
    • 10b Ye TN, Li J, Kitana M, Hosono H. Green Chem. 2017; 19: 749
    • 10c Ding Z.-Y, Wang T, He Y.-M, Chen F, Zhou H.-F, Fan Q.-H, Guo Q, Chan AS. C. Adv. Synth. Catal. 2013; 355: 3727
    • 11a Dobereiner GE, Nova A, Schley ND, Hazari N, Miller SJ, Eisenstein O, Crabtree RH. J. Am. Chem. Soc. 2011; 133: 7547
    • 11b Ji Y.-G, Wei K, Liu T, Wu L, Zhang W.-H. Adv. Synth. Catal. 2017; 359: 933
    • 11c Vivancos A, Beller M, Albrecht M. ACS Catal. 2018; 8: 17
    • 12a Kulkarni A, Zhou W, Török B. Org. Lett. 2011; 13: 5124
    • 12b Xue X, Zeng M, Wang Y. Appl. Catal. A. 2018; 560: 37
    • 13a Wang D.-S, Tang J, Zhou Y.-G, Chen M.-W, Yu C.-B, Duan Y, Jiang G.-F. Chem. Sci. 2011; 2: 803
    • 13b Duan Y, Li L, Chen M.-W, Yu C.-B, Fan H.-J, Zhou Y.-G. J. Am. Chem. Soc. 2014; 136: 7688
    • 13c Zhang Y, Zhu J, Xia YT, Sun XT, Wu L. Adv. Synth. Catal. 2016; 358: 3039
    • 14a Xu R, Chakraborty S, Yuan H, Jones WD. ACS Catal. 2015; 5: 6350
    • 14b Wei Z, Chen Y, Wang J, Su D, Tang M, Mao S, Wang Y. ACS Catal. 2016; 6: 5816
    • 14c Adam R, Cabrero-Antonino JR, Spannenberg A, Junge K, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 3216
    • 14d Sorribes I, Liu L, Doménech Carbó A, Corma A. ACS Catal. 2018; 8: 4545
    • 14e Murugesan K, Chandrashekhar VG, Kreyenschulte C, Beller M, Jagadeesh RV. Angew. Chem. Int. Ed. 2020; 59: 17408
    • 14f Hervochon J, Dorcet V, Junge K, Beller M, Fischmeister C. Catal. Sci. Technol. 2020; 10: 4820
    • 15a Cho H, Torok F, Torok B. Org. Biomol. Chem. 2013; 11: 1209
    • 15b Spadoni G, Bedini A, Lucarini S, Mari M, Caignard D, Boutin JA, Delagrange P, Lucini V, Scaglione F, Lodola A, Zanardi F, Pala D, Mor M, Rivara S. J. Med. Chem. 2015; 58: 7512
  • 16 Sahoo B, Kreyenschulte C, Agostini G, Lund H, Bachmann S, Scalone M, Junge K, Beller M. Chem. Sci. 2018; 9: 8134
  • 17 Zhu G, Pang K, Parkin G. J. Am. Chem. Soc. 2008; 130: 1564
    • 18a Papa V, Cao Y, Spannenberg A, Junge K, Beller M. Nat. Catal. 2020; 3: 135
    • 18b Liu C, Wang M, Liu S, Wang Y, Peng Y, Lan Y, Liu Q. Angew. Chem. Int. Ed. 2021; 60: 5108
    • 19a Wu J, Wang C, Tang W, Pettman A, Xiao J. Chem. Eur. J. 2012; 18: 9525
    • 19b Talwar D, Li HY, Durham E, Xiao J. Chem. Eur. J. 2015; 21: 5370
    • 19c Tao L, Zhang Q, Li S.-S, Liu X, Liu Y.-M, Cao Y. Adv. Synth. Catal. 2015; 357: 753
    • 19d Zhang L, Qiu R, Xue X, Pan Y, Xu C, Li H, Xu L. Adv. Synth. Catal. 2015; 357: 3529
    • 19e Cabrero-Antonino JR, Adam R, Junge K, Jackstell R, Beller M. Catal. Sci. Technol. 2017; 7: 1981
    • 19f Chen F, Sahoo B, Kreyenschulte C, Lund H, Zeng M, He L, Junge K, Beller M. Chem. Sci. 2017; 8: 6239
    • 19g Guan R, Zhao H, Cao L, Jiang H, Zhang M. Org. Chem. Front. 2020; 8: 106
    • 19h Ouyang L, Xia Y, Liao J, Miao R, Yang X, Luo R. ACS Omega 2021; 6: 10415
    • 20a Yan M, Jin T, Chen Q, Ho HE, Fujita T, Chen L.-Y, Bao M, Chen M.-W, Asao N, Yamamoto Y. Org. Lett. 2013; 15: 1484
    • 20b Liu ZY, Wen ZH, Wang XC. Angew. Chem. Int. Ed. 2017; 56: 5817
    • 21a Xia Y, Sun X, Zhang L, Luo K, Wu L. Chem. Eur. J. 2016; 22: 17151
    • 21b Xuan Q, Song Q. Org. Lett. 2016; 18: 4250
    • 21c Yang C.-H, Chen X, Li H, Wei W, Yang Z, Chang J. Chem. Commun. 2018; 54: 8622
    • 21d Pi D, Zhou H, Zhou Y, Liu Q, He R, Shen G, Uozumi Y. Tetrahedron 2018; 74: 2121
    • 21e Zhou X.-Y, Chen X. Org. Biomol. Chem. 2021; 19: 548
    • 22a He R, Cui P, Pi D, Sun Y, Zhou H. Tetrahedron Lett. 2017; 58: 3571
    • 22b Pi D, Zhou H, Zhou Y, Liu Q, He R, Shen G, Uozumi Y. Tetrahedron 2018; 74: 2121
    • 22c Bhattacharyya D, Nandi S, Adhikari P, Sarmah BK, Konwar M, Das A. Org. Biomol. Chem. 2020; 18: 1214
    • 23a Alshakova ID, Gabidullin B, Nikonov GI. ChemCatChem 2018; 10: 4860
    • 23b Wang Y, Huang Z, Leng X, Zhu H, Liu G, Huang Z. J. Am. Chem. Soc. 2018; 140: 4417
    • 23c Grozavu A, Hepburn HB, Smith PJ, Potukuchi HK, Lindsay-Scott PJ, Donohoe TJ. Nat. Chem. 2019; 11: 242
    • 23d Hepburn HB, Donohoe TJ. Chem. Eur. J. 2020; 26: 1963
    • 23e Wu B, Yang J, Hu S.-B, Yu C.-B, Zhao Z.-B, Luo Y, Zhou Y.-G. Sci. China Chem. 2021; 64: 1743
    • 24a Vermaak V, Vosloo HC. M, Swarts AJ. Adv. Synth. Catal. 2020; 362: 5788
    • 24b Ding F, Zhang Y, Zhao R, Jiang Y, Bao RL.-Y, Lin K, Shi L. Chem. Commun. 2017; 53: 9262
    • 24c Li S, Meng W, Du H. Org. Lett. 2017; 19: 2604
    • 25a Mao Y, Liu Y, Hu Y, Wang L, Zhang S, Wang W. ACS Catal. 2018; 8: 3016
    • 25b Liu Y, Mao Y, Hu Y, Gui J, Wang L, Wang W, Zhang S. Adv. Synth. Catal. 2019; 361: 1554
    • 25c Gui J, Cai X, Chen L, Zhou Y, Zhu W, Jiang Y, Hu M, Chen X, Hu Y, Zhang S. Org. Chem. Front. 2021; 8: 4685
  • 26 Bose A, Mal P. Chem. Commun. 2017; 53: 11368
  • 27 Gujral J, Reddy TP, Gorachand B, Ramachary DB. ChemistrySelect 2018; 3: 7900
  • 28 Shen Z, Ni Z, Mo S, Wang J, Zhu Y. Chem. Eur. J. 2012; 18: 4859
  • 29 Jin N, Pan C, Zhang H, Xu P, Cheng Y, Zhu C. Adv. Synth. Catal. 2015; 357: 1149
  • 30 Neufeldt SR, Seigerman CK, Sanford MS. Org. Lett. 2013; 15: 2302
  • 31 Bhattacharyya D, Nandi S, Adhikari P, Sarmah BK, Konwar M, Das A. Org. Biomol. Chem. 2020; 18: 1214
  • 32 Xia Y.-T, Sun X.-T, Zhang L, Luo K, Wu L. Chem. Eur. J. 2016; 22: 17151
  • 33 Shamsi M, Baradarani MM, Afghan A, Joule JA. ARKIVOC 2011; (ix): 252
  • 34 Cadogan JI. G, Hickson CL, Hutchison SH, McNab H. J. Chem. Soc., Perkin Trans. 1 1991; 377
  • 35 Pintér Á, Klussmanna M. Adv. Synth. Catal. 2012; 354: 701