RSS-Feed abonnieren
DOI: 10.1055/a-1986-7969
Asymmetric Formal [3+2] Cycloaddition Reactions of 3-Isothiocyanato Oxindoles: an Update
This work was supported by the Natural Science Foundation of Hubei Province (No. 2022CFB413), the National Natural Science Foundation of China (Nos. 21602052 and 21702121), the 111 Project (D20015), the start-up funding from Wuhan University (Nos. 691000002 and 600460026) and the TaiKang Center for Life and Medical Sciences, Wuhan University (No. 692000007).
Abstract
3-Isothiocyanato oxindoles are a class of important building blocks which have been widely used in the synthesis of structurally diverse enantioenriched spirooxindoles. In this short review, it is attempted to cover the recent synthetic aspects of 3-isothiocyanato oxindoles participated cascade cyclizations in the last few years (i.e., from 2017 to 2022), with an emphasis on formal [3+2] cycloaddition reactions.
1 Introduction
2 Organocatalyzed Formal [3+2] Cycloaddition of 3-Isothiocyanato Oxindoles
3 Lewis Acid Catalyzed Formal [3+2] Cycloaddition of 3-Isothiocyanato Oxindoles
4 Conclusions
Key words
spirooxindoles - 3-isothiocyanato oxindoles - asymmetric synthesis - organocatalysis - Lewis acid catalysis - cycloaddition reactionPublikationsverlauf
Eingereicht: 16. November 2022
Angenommen nach Revision: 24. November 2022
Accepted Manuscript online:
24. November 2022
Artikel online veröffentlicht:
21. Dezember 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rios R. Chem. Soc. Rev. 2012; 41: 1060
- 1b Singh GS, Desta ZY. Chem. Rev. 2012; 112: 6104
- 1c Carreira EM, Fessard TC. Chem. Rev. 2014; 114: 8257
- 1d Ding A, Meazza M, Guo H, Yang JW, Rios R. Chem. Soc. Rev. 2018; 47: 5946
- 2a Lin H, Danishefsky SJ. Angew. Chem. Int. Ed. 2003; 42: 36
- 2b Marti C, Carreira EM. Eur. J. Org. Chem. 2003; 2209
- 2c Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
- 2d Ye N, Chen H.-Y, Wold EA, Shi P.-Y, Zhou J. ACS Infect. Dis. 2016; 2: 382
- 2e Wan Y, Li Y, Yan C, Yan M, Tang Z. Eur. J. Med. Chem. 2019; 183: 111691
- 3a Vine KL, Matesic L, Locke JM, Ranson M, Skropeta D. Anti-Cancer Agents Med. Chem. 2009; 9: 397
- 3b Rottmann M, McNamara C, Yeung BK, Lee MC, Zou B, Russell B, Seitz P, Plouffe DM, Dharia NV, Tan J, Cohen SB, Spencer KR, Gonzalez-Paez GE, Lakshminarayana SB, Goh A, Suwanarusk R, Jegla T, Schmitt EK, Beck HP, Brun R, Nosten F, Renia L, Dartois V, Keller TH, Fidock DA, Winzeler EA, Diagana TT. Science 2010; 329: 1175
- 3c Badillo JJ, Hanhan NV, Franz AK. Curr. Opin. Drug Discovery Dev. 2010; 13: 758
- 3d Arun Y, Bhaskar G, Balachandran C, Ignacimuthu S, Perumal PT. Bioorg. Med. Chem. Lett. 2013; 23: 1839
- 3e Das D, Banerjee R, Mitra A. J. Chem. Pharm. Res. 2014; 6: 108
- 3f Bian Z, Marvin CC, Petersson M, Martin SF. J. Am. Chem. Soc. 2014; 136: 14184
- 3g Kathirvelan D, Haribabu J, Reddy BS. R, Balachandran C, Duraipandiyan V. Bioorg. Med. Chem. Lett. 2015; 25: 389
- 4a Zhou F, Liu Y.-L, Zhou J. Adv. Synth. Catal. 2010; 352: 1381
- 4b Ball-Jones NR, Badillo JJ, Franz AK. Org. Biomol. Chem. 2012; 10: 5165
- 4c Cao Z.-Y, Zhou F, Zhou J. Acc. Chem. Res. 2018; 51: 1443
- 4d Cheng D, Ishihara Y, Tan B, Barbas CF. ACS Catal. 2014; 4: 743
- 4e Gasperi T, Miceli M, Campagne J.-M, de Figueiredo RM. Molecules 2017; 22: 1636
- 4f Mei G.-J, Shi F. Chem. Commun. 2018; 54: 6607
- 4g Gui H.-Z, Wei Y, Shi M. Chem. Asian J. 2020; 15: 1225
- 4h Lin Y, Du D.-M. Chin. J. Org. Chem. 2020; 40: 3214
- 4i Laviós A, Sanz-Marco A, Vila C, Blay G, Pedro JR. Eur. J. Org. Chem. 2021; 2268
- 5 Chen W.-B, Wu Z.-J, Hu J, Cun L.-F, Zhang X.-M, Yuan W.-C. Org. Lett. 2011; 13: 2472
- 6a Han W.-Y, Zhao J.-Q, Zuo J, Xu X.-Y, Zhang X.-M, Yuan W.-C. Adv. Synth. Catal. 2015; 357: 3007
- 6b Tan F, Xiao W.-J, Zeng G.-P. Chin. J. Org. Chem. 2017; 37: 824
- 7 Wang L.-Q, Yang D.-X, Li D, Wang R. Org. Lett. 2015; 17: 3004
- 8a Tietze LF, Brasche G, Gericke KM. Domino Reaction in Organic Synthesis . Wiley-VCH; Weinheim: 2006
- 8b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
- 8c Volla CM, Atodiresei I, Rueping M. Chem. Rev. 2014; 114: 2390
- 8d Du D, Xu Q, Li X.-G, Shi M. Chem. Eur. J. 2016; 22: 4733
- 9a Hong L, Wang R. Adv. Synth. Catal. 2013; 355: 1023
- 9b Gasperi T, Vetica F, de Figueiredo R, Orsini M, Tofani D. Synthesis 2015; 47: 2139
- 9c Tian L, Luo Y.-C, Hu X.-Q, Xu P.-F. Asian J. Org. Chem. 2016; 5: 580
- 9d Chanda T, Zhao JC.-G. Adv. Synth. Catal. 2018; 360: 2
- 10a Malerich JP, Hagihara K, Rawal VH. J. Am. Chem. Soc. 2008; 130: 14416
- 10b Storer RI, Aciro C, Jones LH. Chem. Soc. Rev. 2011; 40: 2330
- 10c Rouf A, Tanyeli C. Curr. Org. Chem. 2016; 20: 2996
- 10d Han X, Zhou H.-B, Dong C. Chem. Rec. 2016; 16: 897
- 11 Lin Y, Liu L, Du D.-M. Org. Chem. Front. 2017; 4: 1229
- 12 Song Y.-X, Du D.-M. Synthesis 2018; 50: 1535
- 13 Lin N, Long X.-W, Chen Q, Zhu W.-R, Wang B.-C, Chen K.-B, Jiang C.-W, Weng J, Lu G. Tetrahedron 2018; 74: 3734
- 14 Liu XL, Gong Y, Chen S, Zuo X, Yao Z, Zhou Y. Org. Chem. Front. 2019; 6: 1603
- 15 Chen S, Wang G.-L, Xu S.-W, Tian M.-Y, Zhang M, Liu X.-L, Yuan W.-C. Org. Biomol. Chem. 2019; 17: 6551
- 16 Zhang L.-L, Da B.-C, Xiang S.-H, Zhu S, Yuan Z.-Y, Guo Z, Tan B. Tetrahedron 2019; 75: 1689
- 17 Bai M, Chen Y.-Z, Cui B.-D, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 2155
- 18a Murugan R, Anbazhagan S, Sriman Narayanan S. Eur. J. Med. Chem. 2009; 44: 3272
- 18b Ranjith Kumar R, Perumal S, Senthilkumar P, Yogeeswari P, Sriram D. Eur. J. Med. Chem. 2009; 44: 3821
- 18c Karthikeyan K, Sivakumar PM, Doble M, Perumal PT. Eur. J. Med. Chem. 2010; 45: 3446
- 19 Gui H.-Z, Meng Z, Xiao Z.-S, Yang Z.-R, Wei Y, Shi M. Eur. J. Org. Chem. 2020; 6614
- 20a Klásek A, Mrkvička V, Lyčka A, Mikšík I, Růžička A. Tetrahedron 2009; 65: 4908
- 20b Zhao BL, Du DM. Org. Lett. 2018; 20: 3797
- 21 Gui H.-Z, Wei Y, Shi M. Org. Biomol. Chem. 2018; 16: 9218
- 22 Zhang C.-B, Dou P.-H, You Y, Wang Z.-H, Zhou M.-Q, Xu X.-Y, Yuan W.-C. Tetrahedron 2019; 75: 130571
- 23 Zhang C.-B, Dou P.-H, Zhao J.-Q, Yuan W.-C. Tetrahedron 2020; 76: 131116
- 24a Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
- 24b Xia Z.-L, Xu-Xu Q.-F, Zheng C, You S.-L. Chem. Soc. Rev. 2020; 49: 286
- 24c Sheng F.-T, Wang J.-Y, Tan W, Zhang Y.-C, Shi F. Org. Chem. Front. 2020; 7: 3967
- 24d Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 24e Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
- 25 Dou P.-H, Chen Y, You Y, Wang Z.-H, Zhao J.-Q, Zhou M.-Q, Yuan W.-C. Adv. Synth. Catal. 2021; 363: 4047
- 26 Zhao B.-L, Du D.-M. Adv. Synth. Catal. 2019; 361: 3412
- 27a Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 27b Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 28 Zhao J.-Q, Zhou X.-J, Zhou Y, Xu X.-Y, Zhang X.-M, Yuan W.-C. Org. Lett. 2018; 20: 909
- 29 Yue D.-F, Zhao J.-Q, Chen Y.-Z, Zhang X.-M, Xu X.-Y, Yuan W.-C. Adv. Synth. Catal. 2018; 360: 1420
- 30 Zhao J.-Q, Zhou X.-J, Chen Y.-Z, Xu X.-Y, Zhang X.-M, Yuan W.-C. Adv. Synth. Catal. 2018; 360: 2482
For selected reviews, see:
For selected examples, see:
For selected reviews, see:
For reviews, see:
For selected reviews, see:
For selected reviews, see:
For selected reviews, see: