Subscribe to RSS
DOI: 10.1055/a-1979-5933
Photocatalytic Cleavage of Trityl Protected Thiols and Alcohols
We gratefully acknowledge the Max-Planck Society for generous financial support. S.M. acknowledges a Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows and the Japan Society for the Promotion of Science (JSPS) for funding through the Overseas Challenge Program for Young Researchers. B.P. thanks the Boehringer Ingelheim Foundation for funding through the Plus 3 Perspectives Programme.
Abstract
We report the visible light photocatalytic cleavage of trityl thioethers or ethers under pH-neutral conditions. The method results in the formation of the respective symmetrical disulfides and alcohols in moderate to excellent yield. The protocol only requires the addition of a suitable photocatalyst and light rendering it orthogonal to several functionalities, including acid labile protective groups. The same conditions can be used to directly convert trityl-protected thiols into unsymmetrical disulfides or selenosulfides, and to cleave trityl resins in solid phase organic synthesis.
Key words
photocatalysis - protective group cleavage - detritylation - carbon–heteroatom bond cleavage - resin cleavageSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1979-5933.
- Supporting Information
Publication History
Received: 19 October 2022
Accepted after revision: 15 November 2022
Accepted Manuscript online:
15 November 2022
Article published online:
07 December 2022
© 2022. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
- 2 Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
- 3 Reischauer S, Pieber B. iScience 2021; 24: 102209
- 4 Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
- 5 Gant Kanegusuku AL, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116
- 6 Milligan JA, Phelan JP, Badir SO, Molander GA. Angew. Chem. Int. Ed. 2019; 58: 6152
- 7 Cavedon C, Seeberger PH, Pieber B. Eur. J. Org. Chem. 2019; 2020: 1379
- 8 Oh S, Stache EE. J. Am. Chem. Soc. 2022; 144: 5745
- 9 Zhang J. ChemSusChem 2018; 11: 3071
- 10 Lanzi M, Merad J, Boyarskaya DV, Maestri G, Allain C, Masson G. Org. Lett. 2018; 20: 5247
- 11 Epling GA, Wang Q. Tetrahedron Lett. 1992; 33: 5909
- 12 Dharpure PD, Bhowmick A, Warghude PK, Bhat RG. Tetrahedron Lett. 2020; 61: 151407
- 13 Kamata M, Kato Y, Hasegawa E. Tetrahedron Lett. 1991; 32: 4349
- 14 Krumb M, Kammer LM, Forster R, Grundke C, Opatz T. ChemPhotoChem 2020; 4: 101
- 15 Tucker JW, Narayanam JM. R, Shah PS, Stephenson CR. J. Chem. Commun. 2011; 47: 5040
- 16 Liu Z, Zhang Y, Cai Z, Sun H, Cheng X. Adv. Synth. Catal. 2015; 357: 589
- 17 Ahn DK, Kang YW, Woo SK. J. Org. Chem. 2019; 84: 3612
- 18 Lechner R, König B. Synthesis 2010; 1712
- 19 Cavedon C, Sletten ET, Madani A, Niemeyer O, Seeberger PH, Pieber B. Org. Lett. 2021; 23: 514
- 20 Konrad DB, Rühmann K.-P, Ando H, Hetzler BE, Strassner N, Houk KN, Matsuura BS, Trauner D. Science 2022; 377: 411
- 21 Nicolaou KC, Pan S, Shelke Y, Rigol S, Bao R, Das D, Ye Q. Proc. Natl. Acad. Sci. U. S. A. 2022; 119: e2208938119
- 22 Wuts PG, Greene TW. Greene's Protective Groups in Organic Synthesis, 4th ed. Wiley; Hoboken: 2006
- 23 Shchepinov MS, Korshun VA. Chem. Soc. Rev. 2003; 32: 170
- 24 Horn M, Mayr H. J. Phys. Org. Chem. 2012; 25: 979
- 25 Jin J, MacMillan DW. C. Nature 2015; 525: 87
- 26 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 27 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 28 Talla A, Driessen B, Straathof NJ. W, Milroy L.-G, Brunsveld L, Hessel V, Noël T. Adv. Synth. Catal. 2015; 357: 2180
- 29 Bottecchia C, Erdmann N, Tijssen PM. A, Milroy L.-G, Brunsveld L, Hessel V, Noël T. ChemSusChem 2016; 9: 1781
- 30 Dethe DH, Srivastava A, Dherange BD, Kumar BV. Adv. Synth. Catal. 2018; 360: 3020
- 31 Mikkelsen RJ. T, Grier KE, Mortensen KT, Nielsen TE, Qvortrup K. ACS Comb. Sci. 2018; 20: 377
- 32 James IW. Tetrahedron 1999; 55: 4855
- 33 Guillier F, Orain D, Bradley M. Chem. Rev. 2000; 100: 2091
- 34 Oka M, Kozako R, Iida H. Synlett 2021; 32: 1227
- 35 He W, Ding Y, Tu J, Que C, Yang Z, Xu J. Org. Biomol. Chem. 2018; 16: 1659
- 36 Oba M, Tanaka K, Nishiyama K, Ando W. J. Org. Chem. 2011; 76: 4173
- 37 West CW, Estiarte MA, Rich DH. Org. Lett. 2001; 3: 1205
- 38 Goodrow MH, Musker WK. Synthesis 1981; 6: 457
- 39 Sakai N, Moriya T, Konakahara T. J. Org. Chem. 2007; 72: 5920
- 40 Reich HJ, Goldenberg WS, Sanders AW, Jantzi KL, Tzschucke CC. J. Am. Chem. Soc. 2003; 125: 3509
- 41 Miyamoto K, Tada N, Ochiai M. J. Am. Chem. Soc. 2007; 129: 2772
- 42 Li Z, Baker DL, Tigyi G, Bittman R. J. Org. Chem. 2006; 71: 629
- 43 Saburi H, Tanaka S, Kitamura M. Angew. Chem. Int. Ed. 2005; 44: 1730
- 44 Miao X, Fischmeister C, Bruneau C, Dixneuf PH. ChemSusChem 2009; 2: 542
- 45 Zajdel P, Nomezine G, Masurier N, Amblard M, Pawłowski M, Martinez J, Subra G. Chem. Eur. J. 2010; 16: 7547
- 46 Pedatella S, Guaragna A, D’Alonzo D, De Nisco M, Palumbo G. Synthesis 2006; 305
- 47 Shaikh NS, Junge K, Beller M. Org. Lett. 2007; 9: 5429
- 48 Zou J, Chen J, Shi T, Hou Y, Cao F, Wang Y, Wang X, Jia Z, Zhao Q, Wang Z. ACS Catal. 2019; 9: 11426