CC BY-NC-ND 4.0 · Laryngorhinootologie 2023; 102(S 01): S59-S66
DOI: 10.1055/a-1959-3021
Referat

Tinnitus and Multimodal Cortical Interaction

Article in several languages: deutsch | English
Christian Dobel
1   Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Jena, Jena
,
Markus Junghöfer
2   Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
,
Birgit Mazurek
3   Tinnituszentrum, Charité – Universitätsmedizin Berlin, Berlin
,
Evangelos Paraskevopoulos
4   Department of Psychology, University of Cyprus, CY, Nicosia, Cyprus
,
Joachim Groß
2   Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
› Author Affiliations

Abstract

The term of subjective tinnitus is used to describe a perceived noise without an external sound source. Therefore, it seems to be obvious that tinnitus can be understood as purely auditory, sensory problem. From a clinical point of view, however, this is a very inadequate description, as there are significant comorbidities associated with chronic tinnitus. Neurophysiological investigations with different imaging techniques give a very similar picture, because not only the auditory system is affected in chronic tinnitus patients, but also a widely ramified subcortical and cortical network. In addition to auditory processing systems, networks consisting of frontal and parietal regions are particularly disturbed. For this reason, some authors conceptualize tinnitus as a network disorder rather than a disorder of a circumscribed system. These findings and this concept suggest that tinnitus must be diagnosed and treated in a multidisciplinary and multimodal manner.



Publication History

Article published online:
02 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Langguth B, Kreuzer PM, Kleinjung T. et al. Tinnitus: causes and clinical management. Lancet Neurol 2013; 12: 920-930
  • 2 Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends in neurosciences 2004; 27: 676-682
  • 3 Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 1995; 268: 111-114
  • 4 Brugge JF, Merzenich MM. Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 1973; 36: 1138-1158
  • 5 Mazurek B, Hesse G, Dobel C. et al. Chronic Tinnitus. Dtsch Arztebl Int 2022; 119: 219-225
  • 6 Andersson G, McKenna L. The role of cognition in tinnitus. Acta Otolaryngol Suppl 2006; 10.1080/03655230600895226 39-43
  • 7 Mohamad N, Hoare DJ, Hall DA. The consequences of tinnitus and tinnitus severity on cognition: A review of the behavioural evidence. Hear Res 2016; 332: 199-209
  • 8 Tegg-Quinn S, Bennett RJ, Eikelboom RH. et al. The impact of tinnitus upon cognition in adults: A systematic review. Int J Audiol 2016; 55: 533-540
  • 9 Zäske R, Frisius N, Ivansic D. et al. Phonetic perception but not perception of speaker gender is impaired in chronic tinnitus. Prog Brain Res 2021; 260: 397-422
  • 10 Ivansic D, Besteher B, Gantner J. et al. Psychometric assessment of mental health in tinnitus patients, depressive and healthy controls. Psychiatry research 2019; 281: 112582
  • 11 Adjamian P, Hall DA, Palmer AR. et al. Neuroanatomical abnormalities in chronic tinnitus in the human brain. Neurosci Biobehav Rev 2014; 45: 119-133
  • 12 Simonetti P, Oiticica J. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research. Int Arch Otorhinolaryngol 2015; 19: 259-265
  • 13 Boyen K, Langers DR, de Kleine E. et al. Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 2013; 295: 67-78
  • 14 Husain FT, Medina RE, Davis CW. et al. Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 2011; 1369: 74-88
  • 15 Mahoney CJ, Rohrer JD, Goll JC. et al. Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 2011; 82: 1274-1278
  • 16 Mühlau M, Rauschecker JP, Oestreicher E. et al. Structural brain changes in tinnitus. Cereb Cortex 2006; 16: 1283-1288
  • 17 Landgrebe M, Langguth B, Rosengarth K. et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 2009; 46: 213-218
  • 18 Leaver AM, Renier L, Chevillet MA. et al. Dysregulation of limbic and auditory networks in tinnitus. Neuron 2011; 69: 33-43
  • 19 Leaver AM, Seydell-Greenwald A, Turesky TK. et al. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 2012; 6: 21
  • 20 Melcher JR, Knudson IM, Levine RA. Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (>8 kHz), but not with tinnitus. Hear Res 2013; 295: 79-86
  • 21 Schecklmann M, Lehner A, Poeppl TB. et al. Cluster analysis for identifying sub-types of tinnitus: a positron emission tomography and voxel-based morphometry study. Brain Res 2012; 1485: 3-9
  • 22 Besteher B, Gaser C, Ivanšić D. et al. Chronic tinnitus and the limbic system: Reappraising brain structural effects of distress and affective symptoms. Neuroimage Clin 2019; 24: 101976
  • 23 Chen Q, Lv H, Wang Z. et al. Outcomes at 6 months are related to brain structural and white matter microstructural reorganization in idiopathic tinnitus patients treated with sound therapy. Hum Brain Mapp 2021; 42: 753-765
  • 24 Makani P, Thioux M, Pyott SJ. et al. A Combined Image- and Coordinate-Based Meta-Analysis of Whole-Brain Voxel-Based Morphometry Studies Investigating Subjective Tinnitus. Brain Sci 2022; 12
  • 25 Aldhafeeri FM, Mackenzie I, Kay T. et al. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 2012; 54: 883-892
  • 26 Benson RR, Gattu R, Cacace AT. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain. Hear Res 2014; 309: 8-16
  • 27 Crippa A, Lanting CP, van Dijk P. et al. A diffusion tensor imaging study on the auditory system and tinnitus. Open Neuroimag J 2010; 4: 16-25
  • 28 Seydell-Greenwald A, Raven EP, Leaver AM. et al. Diffusion imaging of auditory and auditory-limbic connectivity in tinnitus: preliminary evidence and methodological challenges. Neural Plast 2014; 2014: 145943
  • 29 Lin Y, Wang J, Wu C. et al. Diffusion tensor imaging of the auditory pathway in sensorineural hearing loss: changes in radial diffusivity and diffusion anisotropy. J Magn Reson Imaging 2008; 28: 598-603
  • 30 Ryu CW, Park MS, Byun JY. et al. White matter integrity associated with clinical symptoms in tinnitus patients: A tract-based spatial statistics study. Eur Radiol 2016; 26: 2223-2232
  • 31 Yoo HB, De Ridder D, Vanneste S. White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?. Brain Connect 2016; 6: 84-93
  • 32 Ahmed S, Mohan A, Yoo HB. et al. Structural correlates of the audiological and emotional components of chronic tinnitus. Prog Brain Res 2021; 262: 487-509
  • 33 van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010; 20: 519-534
  • 34 Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of tinnitus. Hearing research 2014; 307: 153-162
  • 35 Kok TE, Domingo D, Hassan J. et al. Resting-state Networks in Tinnitus : A Scoping Review. Clin Neuroradiol 2022;
  • 36 De Ridder D, Vanneste S, Song JJ. et al. Tinnitus and the Triple Network Model: A Perspective. Clin Exp Otorhinolaryngol 2022; 15: 205-212
  • 37 Koops EA, Renken RJ, Lanting CP. et al. Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus. J Neurosci 2020; 40: 3178-3185
  • 38 Schlee W, Mueller N, Hartmann T. et al. Mapping cortical hubs in tinnitus. BMC Biol 2009; 7: 80
  • 39 Vanneste S, De Ridder D. Stress-Related Functional Connectivity Changes Between Auditory Cortex and Cingulate in Tinnitus. Brain Connect 2015; 5: 371-383
  • 40 Mohan A, Davidson C, De Ridder D. et al. Effective connectivity analysis of inter- and intramodular hubs in phantom sound perception – identifying the core distress network. Brain Imaging Behav 2020; 14: 289-307
  • 41 Paraskevopoulos E, Dobel C, Wollbrink A. et al. Maladaptive alterations of resting state cortical network in Tinnitus: A directed functional connectivity analysis of a larger MEG data set. Sci Rep 2019; 9: 15452
  • 42 Tomé D, Barbosa F, Nowak K. et al. The development of the N1 and N2 components in auditory oddball paradigms: a systematic review with narrative analysis and suggested normative values. J Neural Transm (Vienna) 2015; 122: 375-391
  • 43 Foxe JJ, Yeap S, Snyder AC. et al. The N1 auditory evoked potential component as an endophenotype for schizophrenia: high-density electrical mapping in clinically unaffected first-degree relatives, first-episode, and chronic schizophrenia patients. Eur Arch Psychiatry Clin Neurosci 2011; 261: 331-339
  • 44 Weisz N, Wienbruch C, Dohrmann K. et al. Neuromagnetic indicators of auditory cortical reorganization of tinnitus. Brain 2005; 128: 2722-2731
  • 45 Attias J, Urbach D, Gold S. et al. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res 1993; 71: 106-113
  • 46 Jacobson GP, McCaslin DL. A reexamination of the long latency N1 response in patients with tinnitus. J Am Acad Audiol 2003; 14: 393-400
  • 47 Jacobson GP, Ahmad BK, Moran J. et al. Auditory evoked cortical magnetic field (M100-M200) measurements in tinnitus and normal groups. Hear Res 1991; 56: 44-52
  • 48 Colding-Jørgensen E, Lauritzen M, Johnsen NJ. et al. On the evidence of auditory evoked magnetic fields as an objective measure of tinnitus. Electroencephalogr Clin Neurophysiol 1992; 83: 322-327
  • 49 Stein A, Engell A, Lau P. et al. Enhancing inhibition-induced plasticity in tinnitus--spectral energy contrasts in tailor-made notched music matter. PLoS One 2015; 10: e0126494
  • 50 Stein A, Engell A, Junghoefer M. et al. Inhibition-induced plasticity in tinnitus patients after repetitive exposure to tailor-made notched music. Clin Neurophysiol 2015; 126: 1007-1015
  • 51 Biswas R, Lugo A, Akeroyd MA. et al. Tinnitus prevalence in Europe: a multi-country cross-sectional population study. Lancet Reg Health Eur 2022; 12: 100250
  • 52 Trochidis I, Lugo A, Borroni E. et al. Systematic Review on Healthcare and Societal Costs of Tinnitus. Int J Environ Res Public Health 2021; 18
  • 53 Tziridis K, Friedrich J, Brüeggemann P. et al. Estimation of Tinnitus-Related Socioeconomic Costs in Germany. Int J Environ Res Public Health 2022; 19
  • 54 Elgoyhen AB, Langguth B, De Ridder D. et al. Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 2015; 16: 632-642
  • 55 San Juan JD, Zhai T, Ash-Rafzadeh A. et al. Tinnitus and auditory cortex: using adapted functional near-infrared spectroscopy to measure resting-state functional connectivity. Neuroreport 2021; 32: 66-75
  • 56 Huang B, Wang X, Wei F. et al. Notched Sound Alleviates Tinnitus by Reorganization Emotional Center. Front Hum Neurosci 2021; 15: 762492