Subscribe to RSS
DOI: 10.1055/a-1953-0322
Temperature-Dependent Dual Fluorescence from Small Organic Molecules
Abstract
The temperature-dependent dual fluorescence from a single component of small organic molecules (SOMs) is very promising for the ratiometric fluorescence sensing of temperature. However, the SOM-based fluorophores typically only show one fluorescence band. It is thus very challenging to achieve dual fluorescence, let alone the dual fluorescence that is sensitive to temperature. Herein, in this short review, we briefly summarized the examples of SOM-based fluorophores exhibiting temperature-dependent dual fluorescence. Through representative examples, we mainly focus on the illustration of the intrinsic mechanisms of this unusual phenomenon, which may take place because of the presence of two local minimum conformations that are thermally equilibrated in the ground state, the presence of two local minimum conformations in the first excited state as the result of significant structural relaxation upon excitation, or the presence of thermal equilibrium between the first and second excited states. Hopefully, the discussions in this short review will provide some important guidelines for the further rational molecular design of such fluorophores.
Key words
small organic molecules - temperature-dependent dual fluorescence - local minimum conformations - ground state - excited state - thermal equilibriumPublication History
Received: 25 July 2022
Accepted after revision: 21 September 2022
Accepted Manuscript online:
29 September 2022
Article published online:
28 October 2022
© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Mecklenbrug M, Hubbard WA, White ER, Dhall R, Cronin SB, Aloni S, Regan BC. Science 2015; 347: 629
- 1b Kucsko G, Maurer PC, Yao NY, Kubo M, Noh HJ, Lo PK, Park H, Lukin MD. Nature 2013; 500: 54
- 1c Brites CDS, Lima PP, Silva NJO, Millán A, Amaral VS, Palacio F, Carlos LD. Nanoscale 2012; 4: 4799
- 2a Cui Y, Zhu F, Chen B, Qian G. Chem. Commun. 2015; 51: 7420
- 2b McLaurin EJ, Bradshwa LR, Gamelin DR. Chem. Mater. 2013; 25: 1283
- 2c Wang X, Wolfbeis OS, Meier RJ. Chem. Soc. Rev. 2013; 42: 7834
- 3a Wu Y, Liu J, Ma J, Lin Y, Wang Y, Wu D. ACS Appl. Mater. Interfaces 2016; 8: 14396
- 3b Albers AE, Chan EM, McBride PM, Ajo-Franklin CM, Cohen BE, Helms BA. J. Am. Chem. Soc. 2012; 134: 9565
- 3c Cui X, Cheng Y, Lin H, Huang F, Wu Q, Wang Y. Nanoscale 2017; 9: 13794
- 3d McLaurin EJ, Bradshaw LR, Gamelin DR. Chem. Mater. 2013; 25: 1283
- 4a Qiao J, Wang Y-H, Chen C-F, Qi L, Dong P, Mu X-Y, Kim D-P. Anal. Chem. 2015; 87: 10535
- 4b Ye F, Wu C, Jin Y, Chan Y-H, Zhang X, Chiu DT. J. Am. Chem. Soc. 2011; 133: 8146
- 4c Zhang H, Jiang J, Gao P, Yang T, Zhang KY, Chen Z, Liu S, Huang W, Zhao Q. ACS Appl. Mater. Interfaces 2018; 10: 17542 (temperature-dependent dual fluorescence of polymers)
- 5a Cui Y, Song R, Yu J, Liu M, Wang Z, Wu C, Yang Y, Wang Z, Chen B, Qian G. Adv. Mater. 2015; 27: 1420
- 5b Rao X, Song T, Gao J, Cui Y, Yang Y, Wu C, Che B, Qian G. J. Am. Chem. Soc. 2013; 135: 15559
- 6a Cao C, Liu X, Qiao Q, Zhao M, Yin W, Mao D, Zhang H, Xu Z. Chem. Commun. 2014; 50: 15811
- 6b Zhu Q, Yang W, Zheng S, Sung HHY, Williams ID, Liu S, Tang BZ. J. Mater. Chem. C. 2016; 4: 7383
- 6c Chandrasekharan N, Kelly LA. J. Am. Chem. Soc. 2001; 123: 9898
- 7 Kasha M. Discuss. Faraday Soc. 1950; 9: 1420
- 8a Cao Y, Nagle JK, Wolf MO, Patrick BO. J. Am. Chem. Soc. 2015; 137: 4888
- 8b Cao Y, Wang X, Shi X, Clee SM, McGeer PL, Wolf MO, Orvig C. Angew. Chem. Int. Ed. 2017; 56: 15603
- 9 Shi Y-G, Wang J-W, Li H, Hu G-F, Li X, Mellerup SK, Wang N, Peng T, Wang S. Chem. Sci. 2018; 9: 1902
- 10 Shimogawa H, Yoshikawa O, Aramaki Y, Murata M, Wakamiya A, Murata Y. Chem. Eur. J. 2017; 23: 3784
- 11 Zhang Z, Wu Y-S, Tang K-C, Chen C-L, Ho J-W, Su J, Tian H, Chou P-T. J. Am. Chem. Soc. 2015; 137: 8509
- 12a Chen J, Wu Y, Wang X, Yu Z, Tian H, Yao J, Fu H. Phys. Chem. Chem. Phys. 2015; 17: 27658
- 12b Zhang Y, Li Y, Wang H, Zhang Z, Feng Y, Tian Q, Li N, Mei J, Su J, Tian H. ACS Appl. Mater. Interfaces 2019; 11: 39351
- 12c Zhang Z, Song W, Su J, Tian H. Adv. Funct. Mater. 2020; 30: 1902803
- 12d Zhang Z, Sun G, Chen W, Su J, Tian H. Chem. Sci. 2020; 11: 7525
- 12e Song W, Ye W, Shi L, Huang J, Zhang Z, Mei J, Su J, Tian H. Mater. Horiz. 2020; 7: 615
- 12f Liu H, Song W, Chen X, Mei J, Zhang Z, Su J. Mater. Chem. Front. 2021; 5: 2294
- 12g Su Y, Liu H, Chen X, Wang Q, Su J, Zhang Z. ACS Appl. Polym. Mater. 2022; 4: 1636 (vibration-induced emission (VIE) molecules)
- 13 Shi L, Song W, Lian C, Chen W, Mei J, Su J, Liu H, Tian H. Adv. Opt. Mater. 2018; 6: 1800190
- 14a Yuan C, Saito S, Camacho C, Irle S, Hisaki I, Yamaguchi S. J. Am. Chem. Soc. 2013; 135: 8842
- 14b Yuan C, Saito S, Camacho C, Kowalczyk T, Irle S, Yamaguchi S. Chem. Eur. J. 2014; 20: 2193
- 15 Sk B, Khodia S, Patra A. Chem. Commun. 2018; 54: 1786
- 16 Feng J, Tian K, Hu D, Wang S, Li Y, Zeng Y, Li Y, Yang G. Angew. Chem. Int. Ed. 2011; 50: 8072
- 17 Fang Q, Li J, Li S, Duan R, Wang S, Yi Y, Guo X, Qian Y, Huang W, Yang G. Chem. Commun. 2017; 53: 5702
- 18a Sun ZB, Liu JK, Yuan DF, Zhao ZH, Zhu XZ, Liu DH, Peng Q, Zhao CH. Angew. Chem. Int. Ed. 2019; 58: 4840
- 18b Liu DH, Sun ZB, Zhao ZH, Peng Q, Zhao CH. Chem. Eur. J. 2019; 25: 10179
- 19a Mellerup S, Wang S. Chem. Soc. Rev. 2019; 48: 3537
- 19b Cao Y, Wang X, Shi X, Clee SM, McGeer PL, Wolf MO, Orvig C. Angew. Chem. Int. Ed. 2016; 55: 1196
- 19c Wang J, Wang N, Wu G, Wang S, Li X. Angew. Chem. Int. Ed. 2019; 58: 3082
- 19d Hou Q, Liu L, Mellerup SK, Wang N, Peng T, Chen P, Wang S. Org. Lett. 2018; 20: 6467
- 19e Li H-J, Mellerup SK, Wang X, Wang S. Org. Lett. 2019; 21: 2838
- 19f Matsumoto T, Tanaka K, Tanaka T, Chujo Y. Dalton Trans. 2015; 44: 8697
- 19g Matsumoto T, Takamine H, Tanaka K, Chujo Y. Mater. Chem. Front. 2017; 1: 2368
- 20a Entwistle CD, Marder TB. Angew. Chem., Int. Ed. 2002; 41: 2927
- 20b Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
- 20c Wakamiya A, Yamaguchi S. Bull. Chem. Soc. Jpn. 2015; 88: 1357
- 20d Ren Y, Jäkle F. Dalton Trans. 2016; 45: 13996
- 20e Li S-Y, Sun Z-B, Zhao C-H. Inorg. Chem. 2017; 56: 8705
- 20f Mellerup SK, Wang S. Chem. Soc. Rev. 2019; 48: 3537
- 21a Malpicci DM, Lucenti E, Giannini C, Forni A, Botta C. Molecules 2021; 26: 6999
- 21b Demchenko AP, Tomin VI, Chou P-T. Chem. Rev. 2017; 117: 13353
- 21c Itoh T. Chem. Rev. 2012; 112: 4541
- 22a Lippert E, Lüder W, Moll F, Nägele W, Boos H, Prigge H, Seibold-Blankenstein I. Angew. Chem. 1961; 73: 695
- 22b Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y. Angew. Chem. Int. Ed. 2017; 56: 254
- 22c Ito A, Ishizaka S, Kitamura N. Phys. Chem. Chem. Phys. 2010; 12: 6641
- 22d Köhn A, Hättig C. J. Am. Chem. Soc. 2004; 126: 7399
- 22e Choudhury SD, Muralidharan S, Pal H. Phys. Chem. Chem. Phys. 2014; 16: 11509
- 23a Mahato P, Saha S, Das A. J. Phys. Chem. C 2012; 116: 17448
- 23b Sasaki S, Drummen GPC, Konishi G. J. Mater. Chem. C 2016; 4: 2731