CC BY-NC-ND 4.0 · Organic Materials 2022; 4(04): 222-227
DOI: 10.1055/a-1953-0155
Supramolecular Chemistry
Short Communication

Guest Encapsulation Scope of a Triptycene-Based Pd2L4 Coordination Cage

a   Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
,
a   Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
,
a   Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
b   State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. of China
,
a   Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany
› Author Affiliations


Abstract

The scope of a lantern-shaped, triptycene-based Pd2L4 coordination cage to encapsulate various carbon-rich guests was investigated. The cage was found to bind two molecules of corannulene and a variety of C60 derivatives in moderate to quantitative yields. Non-disruptive extraction of encapsulated fullerene derivative PC61BM from the cage was demonstrated by the simple addition of CS2 into an acetonitrile solution of the host–guest complex. This process can be accomplished in a layer-to-layer fashion, and thus, the recovered cage can be further utilized in a recycling process. As this self-assembled host is readily synthesized and able to transfer fullerenes and a range of its derivatives into polar organic solvents, it allows facilitating purification, chemical modification and solid-state processing of fullerenes for a range of materials applications.



Publication History

Received: 16 August 2022

Accepted after revision: 16 September 2022

Accepted Manuscript online:
29 September 2022

Article published online:
28 October 2022

© 2022. The authors. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Kroto HW, Heath JR, OʼBrien SC, Curl RF, Smalley RE. Nature 1985; 318: 162
  • 2 Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia S, Williams SP. Adv. Mater. 2010; 22: 3839
  • 3 Umeyama T, Imahori H. Acc. Chem. Res. 2019; 52: 2046
  • 4 Nierengarten J-F. New J. Chem. 2004; 28: 1177
  • 5 Itami K. Chem. Rec. 2011; 11: 226
  • 6 Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL. J. Org. Chem. 1995; 60: 532
  • 7 Puplovskis A, Kacens J, Neilands O. Tetrahedron Lett. 1997; 38: 285
  • 8 Isaacs L, Haldimann RF, Diederich F. Angew. Chem. Int. Ed. Engl. 1994; 33: 2339
  • 9 Thilgen C, Diederich F. Chem. Rev. 2006; 106: 5049
  • 10 Maxouti KL, Hirsch A. Eur. J. Org. Chem. 2018; 2018: 2579
  • 11 Fuertes-Espinosa C, García-Simón C, Pujals M, Garcia-Borràs M, Gómez L, Parella T, Juanhuix J, Imaz I, Maspoch D, Costas M, Ribas X. Chem 2019; 6: 169
  • 12 Leonhardt V, Fimmel S, Krause A-M, Beuerle F. Chem. Sci. 2020; 11: 8409
  • 13 Hasegawa S, Clever GH. Chem 2020; 6: 5
  • 14 Ubasart E, Borodin O, Fuertes-Espinosa C, Xu Y, García-Simón C, Gómez L, Juanhuix J, Gándara F, Imaz I, Maspoch D, von Delius M, Ribas X. Nat. Chem. 2021; 13: 420
  • 15 Wachter M, Jurkiewicz L, Hirsch A. Chem. Eur. J. 2021; 27: 7677
  • 16 Pujals M, Pèlachs T, Fuertes-Espinosa C, Parella T, Garcia-Borràs M, Ribas X. Cell Rep. Phys. Sci. 2022; 3: 100992
  • 17 Kishi N, Akita M, Kamiya M, Hayashi S, Hsu HF, Yoshizawa M. J. Am. Chem. Soc. 2013; 135: 12976
  • 18 Yamashina M, Yuki T, Sei Y, Akita M, Yoshizawa M. Chem. Eur. J. 2015; 21: 4200
  • 19 García-Simón C, Monferrer A, Garcia-Borràs M, Imaz I, Maspoch D, Costas M, Ribas X. Chem. Commun. 2019; 55: 798
  • 20 Chen B, Holstein JJ, Horiuchi S, Hiller WG, Clever GH. J. Am. Chem. Soc. 2019; 141: 8907
  • 21 Chen B, Horiuchi S, Holstein JJ, Jacopo T, Clever GH. Chem. Eur. J. 2019; 25: 14921
  • 22 Chen B, Holstein JJ, Platzek A, Schneider L, Wu K, Clever GH. Chem. Sci. 2022; 13: 1829
  • 23 Hasegawa S, Meichsner SL, Holstein JJ, Baksi A, Kasanmascheff M, Clever GH. J. Am. Chem. Soc. 2021; 143: 9718
  • 24 Yang Y, Ronson TK, Lu Z, Zheng J, Vanthuyne N, Martinez A, Nitschke JR. Nat. Commun. 2021; 12: 4079
  • 25 To the NMR tube where an acetonitrile solution of Pd2 1 4 (0.70 mM, 0.600 mL, 0.42 µmol) was placed, excess solid corannulene was added and heated at 70 °C for 24 h. 1H NMR (500 MHz, CD3CN, 298 K): δ (ppm) e 8.35 (s, 16 H), d 8.03 (d, J = 8.8 Hz, 8H), f 7.86 (m, 8 H), b 7.82 (m, 8 H), c 7.48 (dd, J = 8.8, 5.7 Hz, 8 H), g 7.36 (dd, J = 5.3, 3.3 Hz, 8 H), h 6.61 (s, 8 H), a 6.00 (s, 8H), encapsulated corannulenes 5.47 (s, 20 H). 13C NMR (125 MHz, CD3CN, 298 K): δ (ppm) 166.12, 165.70, 154.15, 152.99, 151.33, 150.30, 148.64, 147.74, 142.88, 142.40, 139.94, 138.09, 133.29, 132.40, 131.49, 130.95, 130.35, 130.16, 128.66, 127.49, 126.89, 126.27, 125.91, 121.68, 120.64, 54.94, 54.54 (12 signals out of 13 signals from empty Pd2 1 4). DOSY: Diffusion coefficient D of corannulenes inside Pd2 1 4 and free corannulene in the same solution were estimated to be 6.69 × 10−10 and 18.58 × 10−10 m2 · s−1, respectively. ESI MS (positive): found: 724.6237; calculated for [(C34H18 N4O4)4Pd2(C20H10)2]4+ to be 724.6248
  • 26 Schmidt BM, Osuga T, Sawada T, Hoshino M, Fujita M. Angew. Chem. Int. Ed. 2015; 55: 1561
    • 27 General procedure: To an acetonitrile solution of Pd2 1 4 (0.35 mM, 1.0 mL, 0.35 µmol) in a vial was added an excess amount of solid guest. The heterogeneous mixture was stirred under heating at 70 °C for 24 h. After the reaction, the residual solid guest was removed by filtration. The yields were estimated from the 1H NMR integral ratio.
    • 2@Pd2 1 4: 1H NMR (500 MHz, CD3CN, 298 K): δ (ppm) b 8.38 (d, J = 5.2 Hz, 4 H), b 8.37 (d, J = 5.2 Hz, 4 H), d 8.32 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), d 8.27 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), e*2 8.22 (s, 8 H), e 7.97 (s, 4 H), e 7.87 (s, 4 H), c 7.78 (dd, J = 8.5, 5.6 Hz, 4 H), c 7.74 (dd, J = 8.5, 5.6 Hz, 4 H), f*4 7.73 – 7.64 (m, 8 H), a 7.34 (d, J = 2.1 Hz, 4 H), g*4 7.26 – 7.20 (m, 8 H), a 7.10 (d, J = 2.1 Hz, 4 H), h 6.43 (s, 2 H), h 6.37 (s, 2 H), h 6.27 (s, 2 H), h 6.20 (s, 2 H), i 4.06 (s, 4 H), j 3.57 (s, 3 H). 13C NMR (150 MHz, CD3CN, 298 K): δ (ppm) 166.15, 166.00, 165.71, 165.60, 154.38, 153.71, 153.49, 153.44, 153.30, 152.23, 152.15, 147.56, 147.45, 146.51, 146.10, 145.73, 145.18, 144.80, 144.15, 144.02, 143.35, 143.01, 142.99, 142.83, 142.81, 142.27, 142.13, 142.03, 141.02, 140.74, 140.28, 140.16, 138.79, 135.51, 132.62, 132.13, 131.09, 131.06, 130.96, 130.61, 129.45, 129.04, 127.76, 127.74, 127.70, 127.69, 126.24, 126.20, 126.16, 126.01, 121.91, 121.76, 121.58, 121.55, 71.41, 69.57, 54.77, 54.70, 54.58, 42.11. DOSY: Diffusion coefficient D = 5.26 × 10−10 m2 · s−1, and hydrodynamic radius r H was calculated to be 12.4 Å. ESI MS (positive): found: 794.0999 and 1087.7986; calculated for [(C34H18 N4O4)4Pd2(C63NH7)]4+ and [(C34H18 N4O4)4Pd2(C63NH7)(BF4)]3+ to be 794.1005 and 1087.8021, respectively.
    • 3@Pd2 1 4: 1H NMR (500 MHz, CD3CN, 298 K): δ (ppm) b 8.63 (d, J = 5.2 Hz, 4 H), b 8.36 (d, J = 5.2 Hz, 4 H), e 8.32 (s, 4 H), d 8.28 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), d 8.26 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), e 8.12 (s, 4 H), e 8.07 (s, 4 H), k/l 7.99 (m, 2 H), k/l 7.94 (m, 2 H), c 7.80 (dd, J = 8.5, 5.6 Hz, 4 H), e 7.79 (s, 4 H), c 7.70 (dd, J = 8.5, 5.6 Hz, 4 H), f*4 7.70 – 7.61 (m, 8 H), a 7.54 (d, J = 2.1 Hz, 4 H), a 7.50 (d, J = 2.1 Hz, 4 H), g*4 7.26 – 7.17 (m, 8 H), h 6.50 (s, 2 H), h 6.37 (s, 2 H), h 6.20 (s, 2 H), h 6.15 (s, 2 H), i 4.44 (s, 2 H), j 3.04 (m, 1 H), j 2.71 (m, 1 H). 13C NMR (150 MHz, CD3CN, 298 K): δ (ppm) 166.16, 166.13, 165.96, 165.68, 165.51, 156.20, 155.44, 153.78, 153.51, 153.36, 153.09, 153.01, 152.48, 151.80, 150.25, 148.66, 148.26, 147.15, 146.57, 146.51, 146.10, 145.71, 145.64, 145.52, 145.26, 145.01, 144.96, 144.76, 144.71, 144.19, 143.85, 143.84, 143.16, 143.11, 143.04, 143.02, 142.97, 142.85, 142.83, 142.61, 142.40, 142.34, 142.13, 142.03, 141.97, 141.13, 140.99, 140.72, 140.48, 140.47, 139.29, 138.21, 138.04, 137.23, 136.41, 132.94, 132.63, 132.48, 131.07, 131.03, 130.90, 130.68, 130.37, 129.42, 129.26, 129.23, 128.37, 127.70, 127.66, 127.53, 126.24, 126.22, 126.02, 125.96, 125.19, 121.83, 121.63, 121.59, 121.30, 120.71, 76.22, 58.71, 54.85, 54.79, 54.64, 54.48 (13 signals from empty Pd2 1 4). DOSY: Diffusion coefficient D = 5.47 × 10−10 m2 · s−1, and hydrodynamic radius r H was calculated to be 12.0 Å. ESI MS (positive): found: 808.8505 and 1107.4664; calculated for [(C34H18 N4O4)4Pd2(C69H8)]4+ and [(C34H18 N4O4)4Pd2(C69H8)(BF4)]3+ to be 808.8518 and 1107.4704, respectively.
    • 4@Pd2 1 4: 1H NMR (500 MHz, CD3CN, 298 K): δ (ppm) b 8.60 (d, J = 5.2 Hz, 4 H), b 8.38 (d, J = 5.2 Hz, 4 H), d 8.33 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), d 8.31 (ddd, J = 8.5, 2.2, 1.2 Hz, 4 H), e 8.24 (s, 4 H), n 8.12 (m, 2 H), e*2 8.09 (s, 8 H), e 7.90 (s, 4 H), o 7.89 (m, 1 H) c 7.81 (dd, J = 8.5, 5.6 Hz, 4 H), c 7.76 (dd, J = 8.5, 5.6 Hz, 4 H), f*4&m 7.74 – 7.61(m, 10 H), a 7.56 (d, J = 2.1 Hz, 4 H), a 7.54 (d, J = 2.1 Hz, 4 H), g*4 7.26 – 7.18 (m, 8 H), h 6.45(s, 2 H), h 6.33 (s, 2 H), h 6.32 (s, 2 H), h 6.19 (s, 2 H), i 3.68 (s, 3 H), j 2.52 (m, 2 H), l 2.31 (m, 2 H), k 2.00 (m, 2 H). 13C NMR (176 MHz, CD3CN, 298 K): δ (ppm) 174.35, 166.17, 166.01, 165.96, 165.68, 165.57, 153.66, 153.65, 153.52, 153.45, 153.11, 152.61, 151.93, 150.26, 149.26, 148.70, 148.12, 147.44, 145.07, 144.91, 144.79, 144.33, 144.12, 144.09, 144.07, 143.96, 143.86, 143.48, 143.24, 143.18, 143.09, 142.99, 142.93, 142.82, 142.80, 142.72, 142.68, 142.62, 142.52, 142.21, 142.05, 141.86, 141.71, 141.59, 140.86, 140.72, 140.70, 140.54, 140.47, 140.41, 139.70, 138.05, 136.80, 136.62, 135.72, 132.88, 132.71, 132.63, 132.51, 131.11, 131.07, 131.03, 130.73, 130.39, 130.33, 130.11, 129.61, 129.24, 128.39, 127.76, 127.73, 127.55, 126.35, 126.25, 126.20, 125.98, 121.73, 121.59, 120.77, 120.72, 81.63, 54.81, 54.72, 54.66, 54.52, 54.50, 54.35, 52.21, 34.41, 33.80, 23.42 (13 signals from empty Pd2 1 4). DOSY: Diffusion coefficient D = 5.38 × 10−10 m2 · s−1, and hydrodynamic radius r H was calculated to be 12.1 Å. ESI MS (positive): found: 827.3594 and 1132.1460; calculated for [(C34H18 N4O4)4Pd2(C72H14O2)]4+ and [(C34H18 N4O4)4Pd2(C72H14O2)(BF4)]3+ to be 827.3610 and 1132.1494, respectively.
  • 28 Yoshizawa M, Klosterman JK, Fujita M. Angew. Chem. Int. Ed. 2009; 48: 3418